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Preface

The notes are aimed to be a summary of all contents in foundations
of algebraic geometry, which are based on the lecture courses Al-
gebraic Geometry I and Algebraic Geometry II at the Universitat
Bonn. The whole story is separated into five parts: Schemes, Mod-
ules, Smoothness, Cohomology and Curves.

To make stuffs well categorized I switched the order of some con-
tents, so the order of contents in notes actually differ from the
usual organized way in Bonn. For example the theory of projective
schemes will be separated into the construction of projective space,
the (very) ample line bundles, Serre duality, projective curves and
Riemann-Roch on it, and so on. So the order of all contents
may confuse the beginners.

The notes are also not self-contained. Indeed, I omitted all the
proofs of easy propositions. The definition of "easy” here is, if
one has gone over the whole courses AG I, AG II, he/she should be
able to figure out a proof for this proposition within ten minutes.
But for beginners it will take sometimes hours. I also did not
include difficult proofs of some big theorems, there might
be only a sketch of proof which just gives the intuition and frame.
But A reference will always be given where one can find the whole
proof. The only proofs I typed down are those I didn’t under-
stand when I was learning the stuffs (I type them down and try
to understand them thoroughly, and they may also be hard points
for other intermeidates), and those proofs the techniques in which
are of great importance and can be applied frequently. Moreover,
I only give references of commutative algebra facts instead of a
proof when they are crucial for a proposition, since I believe that
these are just technical details and do no good to the build-up of
the intuition in algebraic geometry. Based on these three points, I
believe these notes are not suitable for AG beginners, but
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might be very helpful as toolbook after one finishes the
whole journey in the foundations of algebraic geometry.

August 2022
Bonn



Chapter 1

Schemes

1.1 General Sheaf Theory

The Motivation of sheaves is that we want to understand how local
functions on a manifold ”glue” together to be a global function.
For instance, consider the complex manifold CP! with homogen-
eous coordinate [z,w]. We have the cover Uy = {w # 0} and
Uy = {z # 0}, which are homeomorphic to C. Then a mero-
morphic function on Up is defined by f([z,w]) = F(Z) for some
meromorphic function F on C. Similarly we have g([z, w]) = G(%)
on U;. Note we can restrict f and g onto UyNU; to get two mero-
morphic functions on it. If F(z) = G(z~ 1), then f and g agree on
the overlap and define a global meromorphic function.

In algebraic geometry, things work almost in the same way, just by
replacing meromorphic functions with polynomials. So it is worth

spending a whole section to have a lesson in sheaf theory.

Definition 1.1.1. A presheaf F on a topological space X is a
functor

f:Ouv())? —C,

where Ouvy is the category whose objects are open sets in X and
arrows are inclusions of open sets. We call F(U — V) =: res¥ the
restriction from F(V) to F(U). We also write f|y for resy,(f).

A sheaf F is a presheaf satisfying the addtional conditions:

1. (locality) For s,t € F(U), if there exists an open cover U =
\U; Ui such that sy, = t|y, for all 4, then s = t.

1
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2. (gluing) If U = |J, U; is an open cover of an open and s; €
F(U;) are functions on U; satisfying s;|v,nv; = sjlu,nu;, then
there exists an s € F(U) such that s|y, = s; for all .

Remark 1.1.2. If F is a sheaf, then the glued element s in 2. is
unique by 1..

Convince yourself that this definition really makes sense with
the example CP!, where one maps an open to the set of all mero-
morphic functions on it.

Definition 1.1.3. We also write I'(U, F) for F(U), which turns
out to be more useful in the cohomology theory.

If we have a space with a nice basis, then the information of
the sheaf on the basis is already enough to recover the whole sheaf,
asserted as follows.

Proposition 1.1.4. If X admits a basis B which is stable under
intersections, then given a functor F : B°® — C (the arrows in B
are inclusions, and note that B is a full subcategory of Ouvx ) there
exists a unique presheaf G on X walued in C such that G|g = F.

Remark 1.1.5. if the “presheaf” on B satisfies locality and glue-
ing, then the costructed presheaf G is already a sheaf.

Definition 1.1.6. Let 7, G be presheaves valued in C. A morph-
ism of presheaves ¢ : F — § is just a natural transformation of
functors.

FV) —2 5 gv)

|4 14
I“eSUJ J{I‘GSU

F(U) ———— 6(U)

A morphism of sheaves is just a morphism of the underlying
presheaves.

Definition 1.1.7. Let F be a presheaf on X. The stalk of F at
x € X is defined as

Fz = colim F(U)
zeUUCX
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Note that the index of colimit is filtered, so we have a nice
representation of elements in F.

Proposition 1.1.8. Let F,G be sheaves on X, ¢ : F — G a
morphism of sheaves. Then ¢y : F(U) — G(U) is injective (resp.
bijective), if the induced morphism on stalks ¢, @ Fy — Gy is
injective (resp. bijective) for all x € U.

Lemma 1.1.9. Succeeding the notations above, let ¥ : F — G be
another morphism of sheaves. Then ¢ = 1 if and only if ¢, = Y,
forallz e X.

Remark 1.1.10. This proposition shows that isomorphisms of
sheaves can be checked on stalks. However surjectivity on stalks
does not always imply surjectivity on each open. We define a
morphism of sheaves to be injective (resp. surjective, bijective)
if it is injective (resp. surjective, bijective) on stalks. They are
precisely monomorphisms (resp. epimorphisms, isomorphisms) if
the value category is abelian.

The next proposition tells us that we do not need to worry to
much about presheaves.

Proposition 1.1.11. Let F be a presheaf. Then there exists a
sheaf F, unique up to unique isomorphism, called the sheafific-
ation of F, together with a map of presheaves ¢ : F — F, sat-
isfying the universal property: For any morphism of presheaves
¢ F — G where G is a sheaf, there exists a unique morphism of
sheaves {ZS : F — G making the following diagram commute:

F—* 4 F
¢
=
k

Sheaves are often used to describe objects that ”live” on a
topological space, so we want also to ”transport” sheaves onto
another space if we have a map between spaces. Thus we now
define the pullback and pushforward of sheaves.

Definition 1.1.12. Let X,Y be topological spaces, f: X — Y a
continuous map.
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1. For a sheaf F on X we define the pushforward of F along
f to be the sheaf on Y:

FFV)=F(fH(V)

2. For a sheaf G on Y we define the pullback of G along f to
be the sheafification of the presheaf on X:
f716(U) = colim G(V)

faoev

Note the morphisms of sheaves can also be pushed forward
or pulled back in a natural sense. Thus one should consider the
pushforward and pullback as functors between the category of C-
valued sheaves on X and on Y.

Proposition 1.1.13. Succeed the notations above.

1. For x € X we have
f_lg:r = gf(:):)

2. (Pullback-Pushforward Adjunction) There is a natural bijec-
tion
Homgy (f7'G, F) = Homgp, (G, f.F),
i.e. f~1 and f. are adjoints.

Finally we discuss an important case: spaces with “structure”
sheaf. The idea is, to understand an geometric object we need
to understand the functions living on it. In many situations, the
sheaf of local functions has a ring structure (e.g. the sheaf of
meromorphic functions on CP!), i.e. they are sheaf of rings.

Definition 1.1.14. A ringed space (X,Ox) is a topological
space X, endowed with a sheaf of rings Ox : Ouvy¥ — Rings,
called the structure sheaf. A locally ringed space is a ringed

space whose stalks are all local rings.

Definition 1.1.15. A morphism of ringed spaces f : (X,0x) —
(Y,Oy) is a continuous map f : X — Y on the underlying topo-
logical space, together with a morphism of sheaves f*: f~10y —
Ox. A morphism of locally ringed spaces is a morphism of
ringed spaces such that the induced map on stalks f,tﬁ (fOy), =
Oy, f@) — Ox is a local ring homomorphism.
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Remark 1.1.16. By pullback-pushforward adjunction, to give f*
is the same as to give a morphism of sheaves f, : Oy — f.Ox.

Convince yourself that this definition makes sense with the
example of two smooth manifolds ¢ : M; — May. ¢, here is given
by the pullback:f — f o ¢.

1.2 Affine Schemes

We start with a generalization of the vector space k", where k is
a field. Recall the Nullstellensatz:

Theorem 1.2.1 (Hilbert’s Nullstellensatz). Let k be an algebra-
ically closed field, then all mazimal ideals in k[X1,...,X,] are in
the form (X1 —aq,..., X —ay).

Proof. [5] Theorem 1.7. O

One sees from the Nullstellensatz that there is a bijection
between the points (ai,...,a,) and the maximal ideals (X; —
ai,...,Xn—ayp) in the polynomial ring, which inspires us to study
the spectrum of a ring defined as follows.

Definition 1.2.2. We define the spectrum of a ring A as the set
of all prime ideals:

Spec A := {p C Alp prime}
We define the vanishing locus of an ideal I C A as:
V(I):={p € Spec A|I C p}

Remark 1.2.3. Without further mention, all rings in the notes
are commutative with 1.

Proposition 1.2.4. We have

V) =V ZL) .

7 %

Proof. [5] Proposition 3.6. O
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Definition 1.2.5. The vanishing loci of ideals as closed sets define
a topology on Spec A, which we call Zariski Topology.

Later we will endow Spec A with a sheaf containing its algeb-
raic structure, but now let’s develop some topological properties
first.

Proposition 1.2.6. Spec can be extended to a functor from Rings®P
to Top, sending a ring A to Spec A, and a homomorphism f : A —
B to a continuous map Spec f : Spec B — Spec A, Spec f(p) :=

f1p)
Lemma 1.2.7. Spec A is 1.

Definition 1.2.8. Let f € A be a ring element. We call D(f) :=
Spec A\V (f) a principal open (or a distinguished open).

Lemma 1.2.9. The set of all principal opens in Spec A forms a
basis of Zarisiki Topology and is stable under intersections. In
particular, D(f) N D(g) = D(fg)

Proposition 1.2.10. Spec A is quasi-compact.

Proof. By the Alexander subbasis lemma, it suffices to prove that
for each open covering of the form Spec A = (J; D(f;), there ex-
ists a finite subcover. Now Spec A = J;c; D(fi) is equivalent to
Nicz V(fi) = 0, which is equivalent to that the ideal generated

by f; contains 1. That means that there exists fi,..., f, among
all f; and aq,...,a, in A such that Z?Zl a;f; = 1. By the same
argument we see Spec A = U?Zl D(f;) O

Proposition 1.2.11. The principal open D(f) in Spec A is homeo-
morphic to Spec A[f~1]. The closed locus V(I) is homeomorphic
to Spec A/I.

Corollary 1.2.12. Let A,.q := A/Nil(A) be the reduced ring of
A. Then Spec A=Spec A,qq.

Lemma 1.2.13. Let ¢ be a ring homomorphism A — B. Then
the image of D(f) C Spec B under Spec ¢ is D(¢(f)) C Spec A.

Lemma 1.2.14. Spec A is irreducible (i.e. it can’t be written
as the union of two proper closed subsets) if and only if Nil(A) is
prime. This is in particular the case when A is an integral domain.
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Proposition 1.2.15. Every irreducible closed set in Spec A has a
unique generic point.

Theorem 1.2.16 (Generalized Hiblert’s Nullstellensatz). Let A
be a ring. Then we have two bijections:

1. There is a bijection between the closed subsets of Spec A and
the radical ideals in A, by sending V' C Spec A to I[(V) :=
Mpev P> and I C A to V(I).

2. There is a bijection between the irreducible closed subsets of
Spec A and the prime ideals in A, by sending V C Spec A to
its generic point, and p C A to V(p).

Proof. [5] Theorem 1.17. O

Lemma 1.2.17. If A is a Noetherian ring, then Spec A is a
Noetherian topological space (i.e. every descending chain of
closed subsets stabilizes).

Remark 1.2.18. The converse does not hold in general. Consider
A= k[X1,Xo,...]/(X?,X2,...). We see that Spec A has only
one point (X1, Xa,...), but this ideal is not finitely generated.

Lemma 1.2.19. The dimension of Spec A is equal to the Krull
dimension of A. (We define the dimension of a Ty-space X to be
the mazimal length of specializations x1 ~» xg ~> -+ ~> Tp )

We now start to talk about the algebraic structure of Spec A

Definition 1.2.20. We have a contravariant functor from the
basis category of all principal opens to Rings:

F : B°® — Rings,
D(f) = A[f™Y]

This functor satisfies locality and gulability, hence defines a sheaf
of rings Ogpeca on Spec A.  Thus (Spec A, Ospec 4) becomes a
ringed space. We call a ringed space an affine scheme if it is
isomorphic to (Spec A, Ospec a) for some ring A. We denote since
now the ringed space directly with Spec A, and its underlying to-
pological space with |Spec A|.
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Remark 1.2.21. The structure sheaf Ogpec 4 has the explicit form

F(U, OSpecA) = D(l}gl}:UA[f_ll

In particular, I'(Spec A, Ospec 4) = A, since Spec A = D(1).

>~

Lemma 1.2.22. Spec A is a locally ringed space, and Ospec Ap
A.p.

Definition 1.2.23. We define the category of affine schemes AffSch
to be the full subcategory of the category of locally ringed spaces,
whose objects are all affine schemes.

Theorem 1.2.24. Spec can be extended to a functor Rings® —
AffSch, by sending a ring A to Spec A, and a homomorphism
f:A— B to Spec f := (|Spec f|, Spec f,), defined as
|Spec f| : |[Spec B| — |Spec A|,
P fHp).

Spec fb : OSpecA - f*OSpecB :

Ospec 4(D(8)) ——————— Ospec B(D(f(5))

ﬂ k

B[f(s)™']

fls71

Remark 1.2.25. We have actually only defined Spec f, only on
principal opens. But this can be extended to arbitrary opens using
the universal property of limits:

limp(pycr Oa(D(f)) = 0a(U)

0uDG) T E T 0ay)
J limppco f+OB(D(f)) = Op(U) J
Los(DE) T Los(DU)

The functor above is actually an equivalence of categories. In-
stead of proving this we will show a more general result.
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Theorem 1.2.26. Let (X, Ox) be a locally ringed space, Spec B
an affine scheme. Then there is a natural bijection

Hom((X,Ox),Spec B) — Hom(B,T'(X, Ox)).
Proof. [3] Tag 0111 O

Corollary 1.2.27. The functor Spec is an equivalence of categor-
ies between Rings and AffSch.

Definition 1.2.28. We define the affine space A} over a field k
to be A} := Speck[X1, ..., X,].

1.3 Schemes and Morphisms

We now come to the definition of the central objects in algebraic
geometry.

Definition 1.3.1. A scheme X is a locally ringed space with
an open cover X = |J, U;, such that each U; is an affine scheme.
A morphism of schemes is just a morphism of locally ringed
spaces.

Proposition 1.3.2. Let X be a scheme, and U C X be a locally
ringed subspace. Then U is also a scheme.

Proof. Just note that for an affine open Spec A C X, Spec ANU
can be covered by Dgpec 4(f) with some f € A, which are all
affine. O

Definition 1.3.3. Let X be a scheme, and z € X be a point. We
define the residue field at = to be Ox ;/m,, where Ox . is the

stalk of the structure sheaf at z, and m, is its unique maximal
ideal.

Lemma 1.3.4. Let Spec A be an affine scheme. The residue field
at a point p € Spec A is just FracA/p.

The innovative philosophy by Grothendieck suggests that we
should consider the properties of morphisms rather than taking
effort in the properties of schemes itself. So we will only give
several properties of scheme objects here. Then we start to work
on morphisms.
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Definition 1.3.5. A scheme X is called quasi-compact, if its
underlying topological space is quasi-compact. It is called locally
Noetherian, if there exists an affine cover X = | J, Spec 4; such
that each A; is a Noetherian ring. It is called Noetherian, if it
is locally Noetherian and quasi-compact.

Lemma 1.3.6. A scheme is noetherian if and only if it has a finite
affine cover X = |J;_, Spec A; such that each A; is a Noetherian
Ting.

Lemma 1.3.7. Let X be a scheme, X = |J, Spec A; be an affine
cover. Then

dim X = supdim A;
i

Definition 1.3.8. A scheme X is called reduced, if the stalk
Ox z is a reduced ring for all z € X.

Lemma 1.3.9. An affine scheme Spec A is reduced if and only if
A is a reduced ring.

Definition 1.3.10. A scheme X is called integral, if Ox(U) is
an integral domain for all U C X affine.

Lemma 1.3.11. An affine scheme Spec A is integral if and only
if A is an integral domain.

Proposition 1.3.12. A scheme X is integral if and only if it is
irreducible and reduced.

Proof. Assume that X is integral. If X is reducible, then one
finds disjoint opens Uy, Us C X. Taking affine opens Spec A1 C
Uy, Spec Ay C Us, we conclude that

Spec A1 U Spec Ay = Spec Ay H Spec As = Spec A1 x As

is affine, but A; x As is not integral, a contradiction. Reducedness
is clear, as localization of integral domains is again integral domain
and hence reduced.

Now assume that X is irreducible and reduced. Take U C X
affine. Then U is also irreducible and reduced. Hence Nil(A) =0
is a prime ideal, and U is an integral domain. ]
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Definition 1.3.13. A scheme X is called nonsingular, or reg-
ular if it is locally noetherian and the stalk Ox , is regular for all
e X.

Lemma 1.3.14. An affine scheme Spec A is nonsingular if and
only if A is noetherian and reqular.

Like the three definitions above, there are actually two major
kind of algebraic properties on schemes: stalk-local properties and
affine-local properties.

Definition 1.3.15. A scheme property P is called stalk-local, if
there is a ring property @, such that a scheme X has property P
if and only if all stalks Ox , have property Q.

Definition 1.3.16. A scheme property P is called affine-local, if

for an arbitrary affine scheme Spec A the following two conditions
hold:

1. Spec A has property P implies that D(f) = Spec A[f~!] has
property P for all f € A.

2. If there exists f1,--- , fn € A such that |J_, D(f;) = Spec A
(i.e. f; generate the unit ideal in A), and all D(f;) have
property P, then Spec A has property P.

It follows then immediately from the definition that reduced-
ness and regularity are stalk-local. Integrality is affine-local.

Proposition 1.3.17. stalks-local properties are affine-local.

In general the definition of an affine local property is given in
the form: X has P if and only if U has P for all U C X affine.
It is however really hard to check properties on each affine open,
since we even do not know how many affine opens there are in a
scheme. Luckily we have the following theorem which asserts that
it will be suffice to just check on one open affine cover.

Theorem 1.3.18 (Affine Communication Lemma). Let P be an
affine-local property. Then X has property P if and only if there
exists an affine cover X = J, U; such that each U; has property P.

Proof. [3] Tag 0100. O
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Now we can devote ourselves in the long journey of studying
the properties of morphisms. One special case is that we want
to study all schemes lying over a specific scheme (for instance,
Spec k), which motivates the following definition.

Definition 1.3.19. We call Sch/S the category of schemes
lying over S. Its objects are tuples (X, fx) where X is a scheme
and fx is a morphism from X to .S, which we call the structure
morphism. The morphisms ¢ in Sch/S are scheme morphisms
X — Y making the following diagram commute:

X —9 .y

N

Theorem 1.3.20. The fibre product Y X x Z exists for all X,Y, Z
in the category of schemes. If X = SpecA,Y = SpecB,Z =
SpecC, then Y Xx Z = SpecB®4 C.

Proof. [1] Theorem I1.3.3. The basic idea is to glue Spec B® 4C for
affine opens Spec B, Spec C' in Y, Z mapping to Spec A in X. [J

Remark 1.3.21. It is in general not true that |Y x x Z| = |[Y] ¥ x|
|Z|. Consider the product of two affine line Al Xgpecr A}C. It
is just Speck[X] @ k[X] = Speck[X,Y]. But k[X,Y] contains
apparently more prime ideals than |Spec k[X]| x |Spec k[X]|.

The category of schemes has thus good properties ensuring us
to pull back schemes along morphisms between base schemes.

Definition 1.3.22. A property P of scheme morphisms is said to
satisfy

1.COMP, if it is stable under compositions.

2.BC, if it is stable under base change, i.e. given f:Y — X with
property P satisfying BC, then for any cartesian square

IXxY —Y

l ;

Z — X
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the morphism ¢ also has property P.

3.LOCT, if it can be checked locally on target, i.e. f:Y — X
has property P, if for one open covering X = (J; U;, all of f|s-1(1,
have P.

3.LOCS, if it can be checked locally on source, i.e. f:Y — X
has property P, if for one open covering Y = | J; V;, all of fl|y; has
P.

The COMP is clearly of great importance. And in algebraic
geometry it is a general technique to pull back a scheme onto a
base scheme whose structure is well understood, for example an
algebraically closed field, so we would like to keep the property of
morphisms after base change. Therefore a sensible definition of
property should always ensure BC.

Remark 1.3.23. Without further mentions, all the properties of
morphisms defined in this notes actually satisfy COMP and BC.

Definition 1.3.24. A morphism of schemes is called a quasi-
compact morphism, if the preimage of any quasi-compact open
is quasi-compact.

Definition 1.3.25. A morphism f :Y — X is called locally of
finite type, if for all affine U C X, f,Oy(U) is a Ox(U)-Algebra
of finite type. It is called of finite type, if f is locally of finite
type and quasi-compact.

Lemma 1.3.26. A morphism f : Y — X being locally of finite
type is affine-local on X, thus f is locally of finite type if and only
if there there exists an affine cover X = J; U;, such that f.Oy (U;)
is a Ox (U;)-Algebra of finite type for each i.

Definition 1.3.27. Let X, Y be schemes, f: Y — X be a morph-
ism.

1. f is called an open immmersion, if f is an open embedding
on the underlying topological spaces and f: f1Ox — Oy is an
isomorphism of sheaves.

2. f is called a closed immersion, if f is a closed embedding on
the underlying topological spaces and f, : Ox — f.Oy is surject-
ive.

3. fiscalled alocally closed immersion, if it can be factored as
as jot, where 7 is a closed immersion and j is an open immersion.
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4. Y is called an open (resp. closed) subscheme of X, if one
has an open (resp. closed) immersion ¥ — X.

Lemma 1.3.28. Let X,Y be schemes, f:Y — X be a morphism.
1. If f is an open immersion, then Y = f(Y).

2. If f is a closed immersion, and X = Spec A is affine, then
Y = Spec A/I for some ideal I.

Lemma 1.3.29. Let A be a ring, I C A be an ideal, ¢ : A — A/I
be the canonical quotient map. Then the induced scheme morphism
Spec f : Spec A/I — Spec A is a closed immersion with topological
image V (I). We denote with V(I) since now the closed subscheme
Spec A/I.

Remark 1.3.30. We have according to the two lemmata a one-
to-one correspondence between closed subschemes of Spec A and
ideals of A. Also note that V' (I) and V(I?) have the same under-
lying topological space, but different structure sheaves.

Proposition 1.3.31. Let U C X be an open subscheme, f:Y —
X be a morphism. Then the open subscheme f~1(U) inY fits into
a cartesian square:

fHU) ——Y

f'.f_l(U)J( fl

U———X

Definition 1.3.32. Extending the notion of preimage, we define
the preimage of a subscheme Z — X under f : Y — X to be
Z X x Y. Similarly, we define the scheme theoretic fibre of f
at a point z € X to be Speck(z) xx Y, where k(x) is the residue
field at x.

Proposition 1.3.33. If f : Y — X is a closed immersion, then
the preimage of an affine open Spec A C X is Spec A/I for some
ideal I.

More generally, the functor U — ker(f,(U) : Ox(U) — f«Oy(U))
is a sheaf, called the sheaf of ideals corresponding to f. It will be
thoroughly discussed in the next chapter.
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Definition 1.3.34. A morphism f : Y — X is called an affine
morphism if for all affine open U C X the preimage f~}(U) is
also affine.

Lemma 1.3.35. A morphism f:Y — X being affine is an affine-
local property on X, thus f is affine if and only if there exists an
affine cover X =J, U; such that f~Y(U;) is affine for each i.

Corollary 1.3.36. Closed immersions are affine.

Definition 1.3.37. A morphism f : Y — X is called a fi-
nite morphism, if f is affine and for all affine open U C X,
Oy (f~1(U)) is a finite Ox (U)-module.

Lemma 1.3.38. A morphism f:Y — X being finite is an affine-
local property on X, thus f is finite if and only if there exists an
affine cover X = J, U; such that Oy (f~H(U;)) is a finite Ox (U;)-
module for each 1.

Definition 1.3.39. Let f : Y — X be a morphism of schemes.
The diagonal morphism Ay :Y — Y xx Y is defined through
the following diagram:

\Afx

A

» Y xxY Y
o

Y — X

Proposition 1.3.40. The diagonal morphism is a locally closed
1TMMETSIon.

Proof. Just note that we can take an affine cover Y =, U;, then
U; Ui xx Uj; is an open subscheme of ¥ x x Y. The diagonal lies
completely in |J; U; xx U;, and for each U; x x U;, the preimage
of diagonal is U;. Moreover, U; — U; X x U; is a closed immersion,
corresponding to the multiplication map B ®4 B — B,b; ® by —
b1bs. The result follows. O

Definition 1.3.41. A morphism f : Y — X is called a quasi-
separated morphism, if the corresponding diagonal morphism
Ay is quasi-compact. f is called separated, if A; is a closed
immersion.
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Remark 1.3.42. The motivation of separated morphism is that
in the category of topological spaces, a space X is Hausdorff if and
only if the diagonal A : X — X x X is a closed immersion.

Proposition 1.3.43. Let X be a separated scheme over the ring
7, then the intersection Uy NUs of two affine opens Uy, Us is again
affine.

Proof. We first note that Uy NUs = U; X x Us, by showing U; NU,
satisfies the universal property of fibre product. Then we use the
magic diagram on the left:

X1><yX2*>X1><ZX2 U1><XU2*>U1><ZU2
Y — 2 VXY X —2 5 XxzX

By substituing the notations, we get the right Cartesian diagram.
Since the diagonal morphism is closed immersion, the arrow above
is by base change also a closed immersion, in particular affine. But
Uy xz U, is affine, so Uy N Us is affine. O

Just like separatedness for Hausdorffness, we have an analogue
of compact Hausdorfness in algebraic geometry, called properness.

Definition 1.3.44. A morphism f : Y — X is called a proper
morphism if it is separated, of finite type and universally closed
(i.e. the map on the underlying topological spaces is closed, and
stable under base change).

Separatedness and universal closedness are in general hard to
check. Luckily we have a nice criterion for them.

Theorem 1.3.45 (Valuative Criterion). Let f : Y — X be a
morphism of schemes, V a valuation ring with fraction field K,
and given an (not necessarily cartesian) square diagram on the left

SpecK — Y Spec K — Y
" ! Lo
SpecV — X SpecV — X

1. Assume f is quasi-separated. Then f is separated if and only
if there exists at most one lift SpecV — Y for each V' and
square.
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2. Assume f is quasi-compact. Then f is universally closed if
and only if there exists at least one lift SpecV — Y for each
V' and square.

3. Assume f is quasi-separated and of finite type. Then f is
proper if and only if there exists a unique lift SpecV — Y
for each V' and square.

Proof. [3] Tag 01KA, Tag 01KY. O

Remark 1.3.46. The intuition of valuative criterion is that we
consider the spectrum of a discrete valuation ring Spec V', which
has two points, endowed with Sierpinski topology. The non-separatedness
of the affine line with doubled origin reflects as that the two lines
has one shared generic point, but the two origins are not separ-
able in the "Hausdorff sense”. We can then map the open point
in Spec V' to the generic point, and the closed point to any of the
origins. Then we may conclude with the valuative criterion that
the affine line with doubled origin is not separated.

For an arbitrary quasi-separated scheme, roughly (i.e. not rigor-
ously) speaking, the valuative criterion helps us check whether the
scheme contains an affine line with doubled origin as a subscheme,
and hence whether it is separated or not.

Definition 1.3.47. Let k be a field. A variety X over k is a
scheme over k that is integral, separated and of finite type.

We finally state the cancellation theorem, which can almost
always be applied when the structure morphism is separated.

Theorem 1.3.48 (Cancellation Theorem). Let X,Y be schemes
over S and f: X — Y a morphism over S.

X —

! Y
¢X\‘ Sl/¢y

Suppose that ¢x has property P satisfying COMP and BC, and
the diagonal morphism Ay g corresponding to ¢y has property P,
then f has property P.
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Proof. Again we use the magic diagram and substituting the ele-
ments properly we get the graph diagram on the right:

X1><yX2*>X1><ZX2 XnygXT)XXZY
| | L paa
Y — & Y xzY Y — 2 VXY

So the graph morphism I' has property P. Again by the fibre
product diagram
XxgYy — X

P

Y —— S

the projection py has property P. Therefore f = py oI has
property P. O

1.4 Construction of Proj and Projective Spaces

In this section we discuss a very important construction, namely
the homogeneous spectrum Proj of a graded ring. The motiv-
ation is that for an algebraically closed field k, the points [ag :

-t ap| are in one-to-one correspondence to ideals of the form
(a; X; — a;X;)i; in k[Xo, ..., X,], which are maximal among all
homogeneous ideals. So it is natural to consider the set of all ho-
mogeneous prime ideals in a graded ring, which can be seen as the
generalization of the projective space. Like Spec we first define
Proj S as a set, then we give it the Zariski topology, and finally
make it a scheme with a structure sheaf.

Remark 1.4.1. Without further notation, a graded ring S =
D,,~o S is always N-graded and generated by S as an Sp-algebra.
We write then S, := @, Sy, for the irrelevant ideal. There are
more general definitions for graded rings not generated in degree
one, but in algebraic geometry we concern ourselves almost only
with the case for a polynomial ring over a field or its quotient ring,
and the constructions will also be nicer and more clean.

Definition 1.4.2. Let S be a graded ring. We define the ho-
mogeneous spectrum Proj S to be the set of all homogeneous



1.4. CONSTRUCTION OF PROJ AND PROJECTIVE SPACES19

prime ideals except those containing the irrelevant ideal:
Proj S := {p C S|p homogeneous prime,p 2 S}

If I C S is a homogeneous ideal, we define the homogeneous
vanishing locus V, (I) in Proj S to be

Vi(I) :== {p € Proj S|I C p}

Proposition 1.4.3. Just like the affine case, we have

mw(m =V, (Z Ii> .
V+(Il) U V+(IQ) =V (Il ﬂIQ) .

Definition 1.4.4. The homogeneous vanishing loci of homogen-
eous ideals as closed sets define a topology on ProjS. We call it
Zariski Topology.

Remark 1.4.5. ProjS can be naturally thought as a subset of
Spec S. One can also identify Vi (I) = V(I)NProjS. Thus Proj S
has actually the subspace topology.

Unfortunately the Proj does not have a functoriality like Spec .
Indeed, if f : § — T is a homogeneous ring homomorphism, then
the preimage f~!(p) for p € Proj T may still contain the irrelevant
ideal Sy. However, we see that this bad case does not happen if f
is surjective, thus f gives a closed embedding Proj S/I < ProjS.

Definition 1.4.6. Let f € S be a homogeneous element.We call
D4 (f) :=ProjS\V4(f) a homogeneous principal open.

Lemma 1.4.7. The set of all homogeneous principal opens in
Proj S forms a basis of Zarisiki Topology and is stable under in-
tersections. In particular, D (f) N Dy(g9) = D4+ (fg)

Proposition 1.4.8. The homogeneous principal open Dy (f) in
Proj S is homeomorphic to |Spec S(f)], where Sy means the ho-
mogeneous localization at f. The closed locus Vi (I) is homeo-
morphic to Proj A/I.
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Theorem 1.4.9 (Homogeneous Nullstellensatz). Let S be a graded
ring. Then there is a bijection between closed subsets of Proj S
and homogeneous radical ideals in S4, by sending V' C Spec A to
L(V) == pev p: and I C A to Vi (I).

Proof. 1t follows directly from the general Nullstellensatz 1.2.1 [

Remark 1.4.10. Note that we need an extra condition I C S;. A
counterexample is Proj Z[X]. The ideals (2) and (2X) cut out the
same locus since Vi (2X) = Vi (2) UV (X) = V4 (2) UD = Vi (2),
and they are both radical.

Proposition 1.4.11. Let S be a graded ring, p be a homogeneous
prime ideal. Then the closed subset Vi (p) is irreducible.

Remark 1.4.12. Note that unlike the affine case the converse
does not hold. The irreducibility of V' C Proj S does not imply
that I (V') is prime. Just consider Proj Z[X,Y]. Vi (2X) is just a
singleton but Iy (V4 (2X)) = (2X) is not prime.

Lemma 1.4.13. If S is a Noetherian graded ring, then ProjS is
a Noetherian topological space.

Now we start to give the homogeneous spectrum a scheme
structure. For this we need one small lemma.

Lemma 1.4.14. Let S be a graded ring, f,g € S homogeneous.

Then the three localizations (S(f))[(gdegf/fdegg)_l], (S(g))[(gdegf/fdegg)_l]
and St4) are canonically isomorphic. In particular, there underly-

ing topological spaces of spectra are all homeomorphic to D4 (fg) C

Proj S.

Remark 1.4.15. If f, g are homogeneous in degree 1, we will have
a nice form S¢p[(g/f) 7' and S [(f/9)7"].

Definition 1.4.16. Let S be a graded ring. We endow every
homogeneous principal open D (f) = [Spec S(y)| with the struc-
ture sheaf Ospec S(p)- This definition agrees on overlaps, by 1.4.14.
Thus (Proj S, Oproj5) becomes a scheme.

Remark 1.4.17. Since now we write Proj S for the scheme in the
definition, and |Proj S| for the underlying topological space.
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The construction Proj is not completely functorial, because
even if we have a graded ring homomorphism A — B and a ho-
mogeneous prime ideal p in B not contained in B, its preim-
age can still contain A;. We give however some special cases
where a graded ring homomorphism indeed extends to a morph-
ism between two Proj.

Lemma 1.4.18. Let f : A — B be a surjective graded ring ho-
momorphism. Then it induces a closed immersion of schemes
Proj f : Proj B — Proj A.

Lemma 1.4.19. Let f : A — Bg,g : A — A’ be two ring homo-
morphisms. Then the canonical map Id®1 : B — B4 A’ induces
a morphism of schemes Projld ® 1 : Proj B ®4 A" — Proj B.

Remark 1.4.20. In the two situations above, we have actually
[*Oy(n) = Ox(n). We will come back to the definition of O(n)
later in Chapter 2.

Definition 1.4.21. The projective n-space over a ring A P} is
defined as Proj A[ Xy, ..., X,], where all elements in A have degree
0, and all X;’s have degree 1.

Remark 1.4.22. Note that by construction one has a natural
structure morphism P’ — Spec A.

Proposition 1.4.23. Let A be a ring. We have I'(P, Opr (d)) =
A[Xo, ..., Xpuld, i-e. the degree d part of the polynomial ring.

In the world of projective spaces we lose a lot of good properties
in affine cases, but at this cost we gain that the projective n-space
is proper over A.

Proposition 1.4.24. Let A be a ring, then the natural structure
morphism Py — Spec A is proper.

Proof. The proof needs the theory of invertible sheaves, which
is discussed in Chapter 2. First note that P’} is of finite type
and quasi-separated over A. Take a (not necessarily Cartesian)
diagram:

f

Spec K —; P

-
-
-
-
-
-
-
-
-
-
-
-

SpecV ——— Spec A
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where V' is a valuation ring and K its fraction field. f corresponds
to a line bundle on Spec K and n + 1 global sections. But a line
bundle on Spec K is always isomorphic to K itself. Therefore we
see f corresponds to n 4+ 1 elements ag, ..., a, in K. Take a; with
the smallest valuation, then ag/a;, . .., a,/a; defines the same map
f since K is isomorphic to itself as K-vector space by multiplying
with a;. Now aj/a; are in V for all j. So they define a map g to
P™. By construction, the diagram above commutes. This shows
the existence part.

Now assume that two tuples ag, . .., an, bo, . .., b, in V define g1, go
to P", but coincide on Spec K. This implies there exists A € K*
such that a; = Ab;. But either A or A~lisin V, so by multiplying
with either X\ or A™' we make the two tuples isomorphic. Hence
g1 = g2 0

Lemma 1.4.25. dim P’} = dim A + n. In particular, if k is a
field, then dim P} = n.

Definition 1.4.26. We call a scheme X projective over a ring
A, if the structure morphism f : X — Spec A factors through a
closed immersion to a projective n-space over A.

X : P2
NS -

pec A

The study of projective varieties is of great importance in
algebraic geometry. We will discuss more details in the later
chapters with more powerful tools such as ample line bundles and
cohomology.



Chapter 2

Modules on Schemes

Since we use schemes to extend the notion of a ring, a natural
idea is to study the modules on schemes, which we will spend one
whole chapter to discuss.

2.1 Sheaves of Modules and Quasi-coherent
Sheaves

Definition 2.1.1. Let X be a scheme. A sheaf of Ox-modules
is a sheaf of abelian groups M, together with a morphism of
sheaves (scalar multiplication) Ox x M — M, such that M(U)
is a Ox(U)-module via the map Ox(U) x M(U) - M(U). A
morphism of Ox-modules is just a morphism of sheaves respect-
ing the module structure, i.e. the following diagram commutes:

OXXMWOXXN

| |

M—TL N

Remark 2.1.2. Note that every M(U) has an Ox(U)-module
structure, and every stalk M, has an Ox ,-module structure.

Proposition 2.1.3. Let X be a scheme. Then all Ox-modules
and their morphisms form an abelian category.

Definition 2.1.4. Let M be a sheaf of Ox-modules on a scheme
X. The support of M is defined as

suppF = {z € X|M, # 0}.

23
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Definition 2.1.5. Let X be a scheme, M, N be sheaves of Ox-
modules. We define M ®¢p, N, called the tensor product of
M, N, to be the sheafification of the presheaf U — M(U) ®o (1)
N(U).

Lemma 2.1.6. We have for all points x € X a canonical iso-
morphism:

M@0y N)w 2 M, ®0x o N,

Definition 2.1.7. Let X be a scheme, M, N be sheaves of Ox-
modules. We define the internal Hom sheaf from M to N to be
Homp (M, N)(U) := Homp,, —mod(M|v, N|rr). This is a sheaf of
Ox-modules.

Lemma 2.1.8. We have $omp, (M, N)|y = Homo, (M|, N|v).

Proposition 2.1.9 (Tensor-Hom Adjunction). Let X be a scheme,
M, N, L be sheaves of Ox-modules. There is a canonical iso-
morphism

Homp, (M @0, N, L) = Homp (M, Home, (N, L))

functorial in M,N,L. In particular, the functors — @ N and
Hom(N, —) are adjoints.

Definition 2.1.10. Let X,Y be schemes, f : X — Y a morphism
of schemes, M a sheaf of Ox-modules, N a sheaf of Oy-module.
We endow the pushforward f,M with the inheriting Oy-module
structure and consider it as a sheaf of Oy-module. We define the
pullback f*M to be the sheaf of Ox-modules Ox @10, M.

Lemma 2.1.11. Let X,Y be schemes, f : X =Y a morphism of
schemes, then f*Oy = Ox.

Proposition 2.1.12 (Pullback-Pushforward Adjunction). Let X,Y
be schemes, f : X — 'Y a morphism of schemes, M a sheaf of Ox -
modules, N a sheaf of Oy -modules. Then there is an isomorphism

Homo  —Mod (f*N, M) = Homo,, —Mod(N, fxM)

functorial in M, N .
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Proof. By 1.1.13 we have an adjunction of sheaves
Hom 10, _nod(f TN, M) 2 Homo, nod (N, f2M)
and we have always the bijection
Hom 10, yoa(f N, M) = Homo , —mod(f N ® Ox, M)
The result follows. O

Definition 2.1.13. Let X be a scheme, M a sheaf of O x-modules.
We call M is
1. free, if there is an isomorphism M = O?EI for some index set
1.
2. locally free, if there is an open cover X = (J, U;, such that
M|y, is free on U; for all i. We also say that M is a vector
bundle if it is locally free of finite rank.
3. locally projective, if for each affine Spec A C X, M(Spec A)
is a projective A-module.
4. globally generated, if there is a surjection Og’?l — M.
5. of finite type, if there exists an open cover X = |J;U;
such that for each i there exists an integer n;, and a surjection
O = My,
6. of finite presentation, if there exists an open cover X = J, U;
such that for each i there exists two integers m;, n;, and an exact
sequence:

og™ — O™ — M|y, =0

i.e. the kernel of the generating morphism in 4. is again of finite
type.

Remark 2.1.14. Note that a morphism f : Oy — Ox locally of
finite type does not imply f.Oy is an Ox-module of finite type.
Indeed, one definition means locally finitely generated as an al-
gebra and the other means locally finitely generated as a module.
Meanwhile, f is finite is equivalent to f,Oy is an Ox-module of
finite type.

Lemma 2.1.15. All the properties in the definition above are pre-
served under pullback.

Lemma 2.1.16. Local projectiveness is an affine-local property.
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Proof. [3] Tag 05JQ. O

Definition 2.1.17. Let X be a scheme M a vector bundle on
X. Let s € T'(X, M) be a global section. We define the van-
ishing locus V(s) in the following way: Pick an affine cover
X = |UJ;Spec A;. Then $|spec 4, can be viewed as an element of

AP". Find arepresentative (f1,. .., fn) of s, where f; € A;. Define
V(s) on Spec A; to be V(f1,..., fn). This definition glues well on
overlaps. Furthermore we define D(s) := X\V (s).

Now a natural question: For an affine scheme Spec A, how are
the Ospec 4-modules and A-modules related?

Proposition 2.1.18. Let A be a ring, M be an A-module. We
associate every principal open D(f) € Spec A with the A[f~1]-

7) to be the
9)

canonical localization M|[f~] — Mlg~']. These data define a
sheaf on the principal opens of Spec A, and by 1.1.4 extend to a
sheaf of abelian groups on Spec A, and it has a natural O,-module
structure. We call it the sheaf of Ogspec A-modules asscoiated
to M, denoted M.

module M[f~Y], and define the restriction map resgg

Definition 2.1.19. Let X be a scheme, a quasi-coherent sheaf
on X is a sheaf of Ox-modules M such that for every affine open
Spec A € X, M|gpeca = M for some A-module M. If X is fur-
thermore Noetherian and each M is a finite A-module, M is called
a coherent sheaf.

Lemma 2.1.20. The property of a sheaf of Ox-modules being
quasi-coherent is affine-local. In particular, M over Spec A is
quasi-coherent if and only if M = T'(Spec A, M).

Lemma 2.1.21. Let A be a ring, M be an A-module. Then there

is a canonical isomorphism (M), = M,, where (M), is the stalk
of M at p € Spec A.

Lemma 2.1.22. Let A be a ring, M, N be A-modules, f: M — N
a module homomorphism. Then f induces a morphism of Ospec A-
modules M — N.

Proposition 2.1.23. Let A be a ring, M an A-module, N a sheaf
of Ospec A-modules. There is actually an adjunction

Hom(’)X—Mod(Mv N) = HomA—Mod(Ma F(Spec A,N))
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Corollary 2.1.24. Let A be a ring. Then the functor sending
an A-module M to the sheaf of Ospec aA-modules M is an equival-
ence between the category of A-modules and the category of quasi-
coherent sheaves on Spec A.

Lemma 2.1.25. Let X be a scheme, M, N be two quasi-coherent
sheaves. Then on each affine Spec A C X where M|speca =

M,N]SPQCA = N we have $omep, (M, N)(U) = Homg_pod(M, N).

Remark 2.1.26. Despite the lemma, $Hom (M, N) need not to be
quasi-coherent even if M, N are quasi-coherent.

Lemma 2.1.27. Let X be a scheme, M, N be two quasi-coherent
sheaves. Then on each affine Spec A C X where M|gpeca =
M, Nlspeca = N we have (M @0y N)lspeca = M4 N. In
particular, if f Y — X is a morphism of schemes, M a quasi-
coherent sheaf on X and Spec B CY maps mt/\o_/SpecA C X, and
denote M|speca = M. then f*M|specB = M ®@p A.

Proposition 2.1.28. Let X be a scheme. The category of quasi-
coherent sheaves on X is an abelian category.

Definition 2.1.29. Let X be a scheme. A sheaf of ideals 7 on
X is a quasi-coherent subsheaf of Ox. The closed subscheme
associated to Z is the closed subscheme with the underlying to-
pological space supp(Qx /Z), and the structure sheaf f~*(Ox/Z),
where f : supp(Ox/Z) — X is the inclusion of topological spaces.

Proposition 2.1.30. Let X be a scheme, SpecA C X be an
affine open, I a sheaf of ideals on X andY the associated closed
subscheme. Let I be an ideal in A such that Z|speca = I. Then
we get a Cartesian diagram

Spec (A/I) —— Y
SpecA —— X
where the horizontal arrows are open immersions and the vertical

arrows are closed immersions. In particular, closed immersions
are affine morphisms.
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Proposition 2.1.31. Let X be a scheme. There is a one-to-one
correspondence between closed subschemes of X and ideal sheaves
on X, by sending an ideal sheaf to its associated closed subscheme,
and sending a closed subscheme Y — X to ker(Ox — f.Oy).

2.2 Qcoh Sheaves for Projective Schemes

As for each A-module we can associate a quasi-coherent sheaf on
Spec A, we may extend this notion to graded modules on graded
rings and their projective spectra.

Remark 2.2.1. For simplicity, we assume in this section that a
graded ring is N-graded and generated by degree 1. A graded
module will however always be Z-graded.

Lemma 2.2.2. Let S = €P,,5 Sn be a graded ring, M = D,y My,
be a graded module over S. Then for f € S, the homogeneous
localization My := (My)o is an Sy)-module. Furthermore, if

f,g € Si1. Then M(f)[(g/f)_l], M(g)[(f/g)_l] and M(fg) are
canonically isomorphic as S(t4)-modules under the identification

Siplla/ 1= Sgl(f/9) 1= Szg).

Definition 2.2.3. Let S be a graded ring, M a graded S-module.
We define the quasi-coherent sheaf )M associated to M on
Proj S to be the sheaf M) on each homogeneous principal open
D4 (f). By 2.2.2 this definition coincides on intersections of prin-
cipal opens.

Lemma 2.2.4. Let S be a graded ring, M be a graded S-module.
Then there is a canonical isomorphism (M), = My, where (M),
is the stalk ofM at p € Proj S, and M,y := (Mp)o is the homo-
geneous localization of M at p.

Lemma 2.2.5. Let S be a graded ring, M, N be graded S-modules,
[+ M — N a graded module homomorphism. Then f induces a
morphism of Opyojs-modules M — N.

Definition 2.2.6. Let S be a graded ring, n an integer. We define
the twisting sheaf O(n) on Proj S to be the quasi coherent sheaf
5(71/) , where S(n) is the graded S-module with grading S(n),, =
Sntm. If M is any sheaf of Opyojg-modules, we write M(n) for
M@ O(n).
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Lemma 2.2.7. The twisting sheaf O(n) is locally free of rank 1.

We will study more about locally free sheaves of rank 1 in the
next section.
Lemma 2.2.8. For a graded S-module M, we have M(n) =
M(n). In particular, O(n) @ O(m) = O(n +m).
Lemma 2.2.9. Let S be a graded ring, M, N be graded S-modules.

Assume there exists an integer ng such that the graded submodules
Dr>no Mn, D5, Nu are isomorphic, then the associated sheaves

M, N on Proj S are isomorphic.

Proposition 2.2.10. Let S be a graded ring, I a homogeneous
ideal of S. Then the closed subscheme corresponding to I in Proj S
is canonically isomorphic to Proj S/1.

Remark 2.2.11. In particular, if S is a finitely generated, graded
k-algebra, and generated by degree 1, then ProjS can be con-
sidered as a closed subscheme of P}.

Definition 2.2.12. Let S be a graded ring, M a quasi-coherent
sheaf on ProjS. We define ' M := @, ., I'(Proj S, M(n)) to be
the graded S-module associated to M.

Remark 2.2.13. It is indeed nontrivial that I'xM has a graded
S-module structure.

Lemma 2.2.14. Let S be a graded ring, M a graded S-module.
Then there exists an g sufficiently large such that B, I'(Proj S, M (n)) =

@nZno Mn
Lemma 2.2.15. If S = k[Xy,...,X,], then T.O =S.

Lemma 2.2.16. Let S be a graded ring, M a quasi-coherent sheaf
on ProjS. There is an isomorphism M = T M.

Proposition 2.2.17. Let S be a graded ring. There is an equival-
ence of categories between the category of quasi-coherent sheaves
on Proj S, and the category of graded S-modules modulo the equi-
valence relation: M ~ N if and only if @,>,, Mn = D,>n, Nn
Jor some ng. The equivalence goes by sending M to I''M and M
to M.

Proposition 2.2.18. We can find for each closed subscheme Z
in P} a homogeneous ideal I in k[Xo, ..., X,] such that I cuts out
Z.
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2.3 Invertible Sheaves

The simplest class in all quasi-coherent sheaves might be the in-
vertible sheaves. The theory of divisors (including theory of curves
and surfaces and the intersection theory) has also strong relations
with the invertible sheaves. So it is worth spending a whole section
talking about invertible sheaves.

Definition 2.3.1. A quasi-coherent sheaf £ on a scheme X is
called an invertible sheaf, or a line bundle, if there exists a
quasi-coherent sheaf, denoted £, such that £L ® £~ = Ox.

Proposition 2.3.2. All invertible sheaves on a scheme X, modulo
isomorphisms, has a structure of abelian groups, where the addi-
tion is tensor product. We call the group the Picard group of X,
denoted PicX

Lemma 2.3.3. Let X,Y be schemes, f: X — Y a morphism, L
an invertible sheaf on'Y. Then f*L is an invertible sheaf on X.

Theorem 2.3.4. Let L be a quasi-coherent sheaf on a scheme X.
Then the following are equivalent:

1. L is invertible.

2. L is locally free of rank 1.

3. L® ﬁom(ﬁ, Ox) = Ox.

Theorem 2.3.5. Let X be a scheme over a ring A. Then there
is a one-to-one correspondence between morphisms from X to P}

and the tuples (L, s, - .., Sn) modulo isomorphisms, where L is a
line bundle, and sq, ..., s, are global sections that generate L.
Proof. [1] Theorem IL.7.1. O

Remark 2.3.6. It is worth noting that the pullback of O(1) in
the projective space along the morphism defined by £ is just £
itself, and the global sections x; are sent to s;.

Remark 2.3.7. To get a geometric image, consider the case A = k
is a field and x a closed point in X with residue field k. The s; can
be evaluated at x and has the value s;(x) in k. Since s; generate
L they cannot be identically 0 at one point. Then we just map =

to [so(x) : -+t sp(x)].
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Theorem 2.3.8. Let k be a field. Then PicP} = 7Z, by sending n
to O(n).

Proof. [2] Example 11.43. O

Theorem 2.3.9. Let X be a quasi-compact and quasi-separated
scheme, M a quasi-coherent sheaf on X. Let L be a line bundle,
s € (X, L) a global section. Then

1. Let f € T'(X, M) be a global section with f|pwy = 0. Then
there exists an integer n such that f ® s™ = 0, where f ® s is
considered as a global section of M ® L".

2. For each section f € T'(D(s), M) there exists an integer n and
a section fx € T(X, M ® L") such that fx|p) = f @ s".

Proof. 1. Let X = |J;_, U; be an affine open cover. Then on
each U; N D(s), s corresponds to an element s; in Ox (U;) := A4,
and U; N D(s) = Spec A; 5, Therefore f|y,np(s) = 0 implies that
si' f(U;) = 0. The n here is dependent of ¢ but by choosing n large
enough we can assume s} - f(U;) = 0 for all i. Now s]'s? - f(U;)
is precisely the restriction of f ® s on U;. The assertion then
follows.

2. We succeeding the notations above. Clearly D(s) = J, U; N
D(s) is an affine open cover. As U; N D(s) is the same as D(s;) in
Ui, fluinp(s) has actually the form f;/sf for some f; € T'(U;, M ®
L") = T'(U;, M). Hence fily,npe) = f @ s"|u,np(s)- Moreover,
by unifying the n for all ¢ (and also adjusting f; by multiplying
with some power of s;), (filv,nv;, — filvinu;)|ps)nusnu; 18 zero.
Since U; NUj is quasi-compact and quasi-separated, we may use 1.
and conclude that there exists an integer m such that (f;|v;nv; —
filvinu;) @ (slu;nu;)™ = 0. Hence f; @ s™ glue together to be a
global section in T'(X, M ® L"t™), which gives f® s"*"™ after the
restriction. U

Corollary 2.3.10. Let A be a graded ring finitely generated in
degree 1, M a quasi-coherent sheaf of finite type on Proj A. Then
there exists an integer ng such that for all n > ngy the sheaf M(n)
1s finitely globally generated.

We always hope that a proper scheme over A can be embedded
as a closed immersion into some projective space: ¢ : X < P7.
Recall that to give a morphism into P’} is the same as to give a line
bundle £ and n + 1 global sections. In order to characterize the
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line bundles which indeed give a closed immersion, we observe two
properties of the line bundle :*O(1) which do not hold in general
if ¢ is not a closed immersion:

1. For each s € I'(X, *O(1)), D(s) is affine.

2. For a quasi-coherent, of finite type sheaf M on X, M(n) is
globally generated for n > 0.(See 2.3.10)

These two properties motivates the following definitions of ample
line bundles. We will see that the two properties indeed almost
characterized the bundles we want.

Definition 2.3.11. Let X be a scheme over a ring A, £ an invert-
ible sheaf on X. We call £ a very ample line bundle relative
to A if there exists a closed immersion ¢ : X < P’ such that

L=00(1).

Definition 2.3.12. Let X be a quasi-compact scheme. We call an
invertible sheaf £ on X an ample line bundle if for each z € X
there exists a s € T'(X, LZ") for some n > 0 such that z € D(s)
and D(s) is affine.

Lemma 2.3.13. Let £ be an ample line bundle on a scheme X.
The following are equivalent:

1. L is ample.

2. LZ™ is ample for all n > 0.

3. LB is ample for some n > 0.

Lemma 2.3.14. Let X be an affine scheme. Then every invertible
sheaf is ample. Indeed, if s is a global section of the line bundle
L then D(s) is affine.

Lemma 2.3.15. Let f : X — Y be a locally closed immersion of
schemes, L an ample line bundle on'Y. Then f*L is ample on X.

Proposition 2.3.16. Let X be a quasi-compact scheme with an
ample line bundle. Then X 1is separated.

Theorem 2.3.17 (criterion of ampleness). Let X be a quasi-
compact scheme, L a line bundle. Then the following are equi-
valent:

1. L is ample.

2. The open subsets D(f) that are affine form a basis of topology,
when f goes over all elements in T'(X, LZ™) for all n > 0.
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3. The open subsets D(f) form a basis of topology, when f goes
over all elements in T'(X, L®") for all n > 0.

4. For all quasi-coherent, of finite type sheaf M on X, there exists
an integer ng, such that for all n > ng, the quasi-coherent sheaf
M@ L™ is globally generated.

The next theorem due to Serre needs the theory of sheaf co-
homology, but we still state it here for an easier looking up.

Theorem 2.3.18 (Serre’s cohomological criterion of ampleness).
Let X be a proper scheme over a Noetherian ring A, L a line
bundle. Then the following are equivalent:

1. L is ample.

2. For all quasi-coherent sheaves M of finite type on X, there
exists an integer ng, such that for all n > ng and all i > 0,
H{(X,M® L) =0.

Theorem 2.3.19. Let X be a proper scheme over a ring A, L a
line bundle. Then the following are equivalent:

1.L is ample.

2.L™ is very ample relative to A for some n.

3. There exists an integer ng such that for all n > ng, L™ is very
ample relative to A.

2.4 Relative Spec and Proj

In this section we give the definition of relative Spec and relative
Proj, and prove some funtorial properties. Recall that Spec A
represents the functor X — Hom(A,I'(X,Ox)) (1.2.26).

Theorem 2.4.1 (relative Spec). Let S be a scheme, A a quasi-
coherent Og-algebra. Then there exists a scheme, denoted SpeCS(A),
called relative Spec of A on S, such that there is a bijection,
functorial in X, when given a scheme morphism f: X — S.

Homg_gen (X, Spec ((A)) = Homog—aig(A, f:0x)

Remark 2.4.2. By Yoneda’s lemma, the relative Spec of a certain
Og-algebra is unique up to unique isomorphism.

To construct the right scheme we need one lemma.
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Lemma 2.4.3. Let X be a scheme, A a quasi-coherent Ox -algebra,

U' CU C X two affine opens. We have a canonical map Spec A(U") —

Spec A(U) induced by the restriction map, and canonical maps
Spec A(U") — U’,Spec A(U) — U since A is an Ox-algebra.
Then the following diagram is Cartesian:

Spec A(U") ——— Spec A(U)

| k

U’ » U

Proof of Theorem 2.4.1. We construct Spec ((A) as follows. For
each affine open U C S the preimage U Xxg Spec ((A) is just
Spec A(U). By the previous lemma this construction glues well
on overlaps.

Now let f: X — S be a morphism of schemes. Given a morphism
of Og-algebras A — f.Ox, we get in particular homomorphism
of rings f.Ox(U) = Ox(f~4(U)) — A(U), which induces morph-
ism of schemes f~1(U) — Spec A(U). Let U goes over all affine
opens of S, and glue these morphisms together using the property
of sheaf morphisms we get a morphism X — Spec .(A). We omit
the verification that the following diagram commutes.

Conversely given a morphism of schemes g : X — Spec .(A) such
that the following diagram commutes,

X ——2 5 Spec ((A)

N

we note that this gives a morphism of (not necessarily quasi-
coherent) Ogpec i A)y-algebras OSpeCS( A) — 9«Ox, which gives after

pushforward a morphism of (not necessarily quasi-coherent) Og-
algebras W*OspecS(A) — g+ Ox. Now W*Ospis(f‘) =2 A mg.0x =
f+Ox. The result follows.

We omit the verification that these two constructions are mutually
inverse. O

Remark 2.4.4. By the construction, the structure morphism 7 :
Spec 4(A) — Sis affine. Explicitly, for each open affine U C S, the
preimage 7~ }(U) is Spec. A(U). In particular, W*OSPQCS(A) =A
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Lemma 2.4.5. Let S be a scheme, A, B two quasi-coherent Og-
algebras, and ¢ : A — B a morphism of Og-algebras. Then ¢
induces a morphism of schemes Spec ((B) — Spec ((A) over S.
Thus the relative Spec extends to a functor from the category of
Og-algebras to the category of schemes over S.

Proposition 2.4.6. The relative Spec behaves well with pullbacks.
Let XY be schemes, f: X —Y a morphism. A a quasi-coherent
Oy -algebra. Then the following diagram, induced by the canonical
morphism A — f.f* A, is Cartesian.

Spec Ox (f*A) —— Spec Oy (A)

| |

X ! Y

We also construct the relative Proj via glueing. For simplicity
all graded quasi-coherent Og-algebra is generated in degree 1.

Lemma 2.4.7. Let S be a scheme, A a graded quasi-coherent
Og-algebra. Let U' C U C S be two affine opens. Then the homo-
morphism of graded rings A(U) — A(U’) induces a morphism of
schemes Proj (A(U")) — Proj (A(U)), and the following diagram
1s Cartesian.

Proj (A(U")) ———— Proj (A(U))

| J

U’ » U

Theorem 2.4.8. Let S be a scheme, A a graded quasi-coherent
Og-algebra. Then there exists a scheme, denoted Pr_ojos (A), called
the relative Proj of A on S, together with a morphism m :
mos (A) = S such that for each affine open U C S, 7~ (U) =
Proj A(U).

Proof. Just simply glue Proj A(U) together. By the previous
lemma they glue well. O

Remark 2.4.9. The relative Proj is actually also functorial like
the relative Spec in some sense, but the precise formulation is too
complicated. For more details see also [3] Tag 07ZF.
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Lemma 2.4.10. Let S be a scheme, A a graded quasi-coherent
Og-algebra. For each affine open U C S, we have the tautolo-
gical bundle Or—1(;y(1) on Proj A(U). These bundles on each U
agree on overlaps and therefore glue together. We denote the glued

bundle with OEOS 4)(1).

Proposition 2.4.11. The relative Proj behaves well with pull-
backs. Let X,Y be schemes, f : X — Y a morphism. A a
graded quasi-coherent Oy -algebra. Then we have a morphism
Pr_ojox(f*A) — moy(A), and the following diagram com-
mutes and is Cartesian.

Proj Ox(f*.A) — Proj (A)

| J

X Y

Proposition 2.4.12. Let S be a scheme, A a graded quasi-coherent
Og-algebra, and L a line bundle on S. Define the twisted algebra
Ax L= @ o9 Aa ® L with the obvious addition and multiplic-
ation. We have then an isomorphism of schemes ¢ : X * L :=
Proj (Ax L) 2 X = Proj . (A) such that the following dia-
gram commutes:

Moreover, we have Ox.r(d) = ¢*Ox(d) @ n/*L".

Sketch of proof. It follows from the fact that locally on D4 (g) C X
a section f/g" of the structure sheaf can be mapped to f®s"/¢"®
s™ and vice versa. For twisting sheaf Ox.r(1) a section f/g"
should however be mapped to f ® s"*!/g" ® s”. Thus we have to
twist ©*L" for the right transition function. O

Definition 2.4.13. Let S be a scheme. We define the relat-
ive projective n-space over S to be P§ := P7 Xgpecz S =
Proj OS(SymOgH).
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Moreover we are interested in schemes over S that look locally
like a relative projective n-space over S, which motivates us to the
following definition.

Definition 2.4.14. Let S be a scheme, £ be a quasi-coherent Og-
module. We call P(&) := Proj (Sym&) the projective bundle
of £ over S. If £ is locally free of rank n + 1, we also call P(£) a
P"-bundle.

Lemma 2.4.15. Let S be a scheme, £ a vector bundle on S of rank
n+ 1. Then the P"-bundle P(E) deserves its name, i.e. for each
open U C X where & is trivial, 7= (U) 2 P¥, where m: P(€) — S
1$ the structure morphism.

Proposition 2.4.16. Let S be a scheme, £ be a quasi-coherent
Og-module, and L a line bundle on S. There is an isomorphism
¢ :P(E®L)=P(E) such that the following diagram commutes:

PESL) — P s PE)

N

S
Moreover, we have Opggr)(1) = ¢*Ope)(1) @ 7 L.

Theorem 2.4.17. Let S be a scheme, £ a vector bundle on S of
rank n+1, X a scheme over S with structure morphism f. Then
there is a one-to-one correspondence between morphisms g : X —
P(E) over S, and surjections n : f*€ — L modulo isomorphisms
(see remark below), where L is a line bundle on X.

X —2% 5 PE)

N

Remark 2.4.18. The isomorphism means a commutative dia-
gram:

fre

L———— [
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Sketch of proof. The bijection in one direction works by sending g
to f*€ — ¢*O(1), which is the pullback of the canonical surjection
& — O(1) along g.

Conversely assume we have n : f*€ — L. Pick an affine open cover
S = U, Ui such that £|y, are trivial. Then n|s-1(y,) degenerates to
(’)}lfll(Ui) — L|-1(1,), which gives n+1 global sections of L] -1y,
and hence define a morphism f~1(U;) — 7~ 1(U;) = Pp,- By 2.3.5
the morphisms on each f~1(U;) glue together and we obtain a
morphism X — P(E). O



Chapter 3

Flatness and Smoothness

In this chapter we extend the notion of smoothness in differential
geometry to the algebraic schemes and study its properties and
criteria.

3.1 Flatness and Faithfully Flat Descent

Recall that an A-module M is flat (resp. faithfully flat) if and only
if the funtor — ®4 M is exact (resp. faithful and exact). Again
we want to extend the notion to all Ox-modules on a scheme X.
It will turn out that the flatness condition is crucial for a scheme
to be relative smooth to another scheme.

Definition 3.1.1. Let X be a scheme. An Ox-module M is called
flat if the functor OxMod — OxMod, N — N ®0, M is exact.

Lemma 3.1.2. Let X be a scheme, M an Ox-module. Then M
is flat if and only if the stalk My is a flat Ox z-module for all
reX.

Remark 3.1.3. Therefore an Ox-module being flat is a stalk-
local condition. In particular, if M is a quasi-coherent sheaf of
Ox-modules, then M is flat if and only if there exists an affine
cover X = |J, U; such that M(U;) is flat over Ox (U;), if and only
if for each affine open U C X, M(U) is flat over Ox (U).

Definition 3.1.4. Let X,Y be schemes, f: X — Y a morphism.
[ is said to be flat if for all z € X, Ox, is flat over Oy, p(,. [ is
said to be faithfully flat if f is flat and surjective

39
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Remark 3.1.5. Note the definition of a flat morphism does not
imply that Ox is flat as Oy-module.

Remark 3.1.6. The motivation of the definition of faithful flat-
ness comes from the fact that a ring homomorphism A — B is
faithfully flat if and only if B is flat over A and Spec B — Spec A
is surjective.

Lemma 3.1.7. Let X, Y be schemes, f: X —Y a morphism. X
is flat over Y if and only if there exist affine covers X =J,U;, Y =
U, Vi such that f(U;) C Vi and Ox(U;) is flat over Oy (V;), if and
only if for each affine U C X mapping into affine V C X, Ox(U)
is flat over Oy (V).

Theorem 3.1.8. Let X,Y be schemes of finite type over a field
k, and Y irreducible f : X — Y a flat morphism. Then for any
(even not closed) point y € Y, the scheme theoretic fibre f~1(y)
has dimension dim X — dimY. Conversely if a fibre f~1(y) has
dimension n, then dim X = dimY + n.

Proof. We only give the proof where X is irreducible. For a general
proof see [1] Corollary I11.9.6. First recall the algebraic fact that
if ¢ : B — A is a flat local homomorphism of local rings, then
dim A = dim B + dim A/mpA. See [3] Tag 000N for a proof.

We reduce to the case where X = Spec A,Y = Spec B are affine.
Then dim f~!(y) = dim A/p, A. Pick a maximal ideal m in A/p, A,
it corresponds to a maximal ideal in A, which by abuse of notation
we also denote with m. Then since A is catenary, dim An/pyAm,
dim A, = dim A. Then we have dim A = dim Ay, = dim By, +
dim Ay /pyAn = dimB + dim A/p,A. As dimB = dimY and
dim A = dim X we are done.

The converse direction is clear. O

Remark 3.1.9. This shows that when we have a flat morphism
f: X — Y and consider the fibre f~!(y), the fibre won’t change
illy when we slightly move the point . A counter-exmaple is the
projection of the cross Spec k[z, y]/(xy) onto the x-axis Spec k[x].
The preimage of x # 0 is a closed point but the preimage of 0 is
the y-axis.

We now start to talk about faithfully flat descent. The central
question is, given a scheme X over a scheme S, a faithfully flat
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morphism f : S” — S and a property P of X xS’ (i.e. the scheme
after base change), does X also have P?. The answer is yes for
almost all scheme properties that we have encountered.

We can even generalize the notion and ask whether an Ox-module
M descends, i.e. is there an Oy-module N such that M =
f*N? Moreover we can even descend schemes through faithful
flat morphisms. We will just list the descending properties and
formulate the descent of modules. For a detailed discussion see [2]
Chapter 14.

Theorem 3.1.10. Let X,Y be schemes, f : X — Y a faithfully
flat morphism. If X is either

1. reduced,

2. normal,

3. nonsingular,

then so is Y.

Theorem 3.1.11. Let X, Y be schemes over a scheme S and f :
X —'Y a morphism over S. Let S' be another scheme, g : S' — S
be a base change morphism, and denote f' : X' := X xg 5" —
Y':=Y xg 8’ the schemes and morphisms after base change.

x — Iy

~ S

S

Assume g is surjective. If [’ is either
1. surjective,
2. injective,
3. bijective,
then so is f.

Theorem 3.1.12. Succeeding the notations above, and assume
now g 1s quasi-compact and faithfully flat. If f' is either

open,

closed,

a homeomorphism on the underlying topological spaces,
quasi-compact,

quasi-separated,

Crds Lo do =
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6. separated,
then so is f.

Theorem 3.1.13. Succeeding the notations above. We continue
to assume g is quasi-compact and faithfully flat. If [’ is either
locally of finite type,

of finite type,

locally of finite presentation,

of finite presentation,

an isomorphism,

a monomorphism,

a locally closed immersion,

an open immersion,

9. a closed immersion,

10. proper,

11. affine,

12. finite,

then so is f.

0 RS Gds oo~

3.2 Formal Smoothness

We now introduce the notion of smoothness. We first give the most
general definition of smoothness which seems to be less intuitive.
Then we describe the properties that a smooth scheme possesses
(mainly the properties of relative Kéhler differentials in the next
section), which shows that this definition really coincides with our
intuition of smoothness in geometry.

Definition 3.2.1. A morphism of schemes f : T — T’ is called
a first order thickening or a square zero extension if f is a

closed immersion and the corresponding sheaf of ideals Z satisfies
7% =0.

Remark 3.2.2. One should consider 7" as the same scheme T
but with a little more information of the normal vectors on T'. A
good example of a first order thickening that one should always
keep in mind is Speck — Speck[e]/(¢?), by sending & to 0. We
also call Spec k[¢]/(¢?) a point with normal vectors.

Lemma 3.2.3. Let f : T — T’ be a first order thickening of
schemes. Then T and T’ have the same underlying topological
space.
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Definition 3.2.4. A morphism of schemes f : X — S is said
to be formally smooth (resp. formally unramified, formally
étale) if given any (not necessarily Cartesian) diagram:

T — X

Lol

T — S

there exists at least one (resp. at most one, exactly one) morphism
T" — X making the diagram commute.

T — X

L 7]

-,

77— S

Remark 3.2.5. It is clear from definition that a morphism being
formally smooth (resp. formally unramified, formally étale) satis-
fies COMP and BC. But one has to use sheaf cohomology to show
that it is also LOCS and LOCT. For a proof see [3] Tag 0DOF.

Definition 3.2.6. A morphism of schemes f : X — S is said to
be smooth (resp. unramified, étale), if it is formally smooth
(resp. formally unramified, formally étale) and locally of finite
presentation (resp. locally of finite type, locally of finite present-
ation).

Remark 3.2.7. In Grothendieck’s EGA, unramified morphisms
are asked to be locally of finite presentation. However we hope all
closed immersions to be unramified (There are closed immersions
whose sheaves of ideals are not of finite type), thus we weaken the
condition for unramified morphisms.

Definition 3.2.8. Let X be a scheme over a field k, x € X a point
with residue field k. We define the Zariski cotangent space
at x to be CT, X := mac/mg%7 where m, is the unique maximal
ideal in the stalk Ox ;. Note it has a k-vector space structure via
the isomorphism Ox ,/m, = k. We define the Zariski tangent

space to be the dual vector space T, X := (CT,X)".

Proposition 3.2.9. Let X be a locally noetherian scheme over
a field k, x € X a point with residue field k. Let T = Speck —
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T’ = Speckle]/(e2) be the first order thickening. There is a one-to-
one correspondence between the elements in T, X and morphisms
T — X making the following diagram commute.

T o X

l /)r J{

T Speck

Proof. To give a morphism 7" — X is the same as to give a local
ring homomorphism Ox, — k[e]/(¢?). Take a basis fi,---, f,
in CT, X, which by Nakayama’s lemma lift to a generator set
fi,-++, fn in my. Given a local homomorphism Ox , — k[e]/(g?)
we know f; — a;e for some a; € k, which defines a linear map
CT,X — k by sending f; to a;. Conversely given a linear map
CT,X — k, sending f; to a; we can define a local ring homo-
morphism Ox . — k[e]/(€?), fi = aie. O

3.3 Kahler Differentials

Proposition 3.2.9 gives us the intuition that smoothness has some
relations with the tangent space. Hence We want to construct
relative tangent space of a morphism X — S even when S is not
affine and study its properties. This is the motivation of Kéhler
differentials. We start with an algebraic treatment of the deriva-
tion.

Definition 3.3.1. Let A, B be rings, f : A — B a ring homo-
morphism, M a B-module. An A-module homomorphism d : B —
M is called an A-linear derivation if it satisfies:
1.(Annihilation) d(f(a)) = 0 for all a € A.

2.(Leibniz’s Rule) d(ab) = a - d(b) + b - d(a) for all a,b € B.

Remark 3.3.2. Note that d is not B-linear. Indeed, d is B-linear
if and only if d is the zero homomorphism, since d(b) = d(1 - b) =
b-d(1) =0.

Remark 3.3.3. A good example one should keep in mind is the
module of differentials of the polynomial ring B := k[z,y| over
k, which is defined as M = B - dz @ B - dy. The dz,dy are just
formal symbols. The derivation is given by d: B — M, f — df =
2] a

o do+ 5L ay
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Proposition 3.3.4. Let A,B be rings, f : A — B a ring ho-
momorphism. There exists a B-module Q}B/Ar called the Kdahler
differential of B relative to A, satisfying the following universal
property:

1. There exists an A-linear derivation d : B — Q}3/A’
universal derivation.

2. For a B-module M and an A-linear derivation dy;, there ex-
ists a unique B-module homomorphism ¢ : QlB/A — M such that
dy = ¢od.

i.e. in the language of representable functors, there exists a natural
bijection HomB_MOd(Q}B/A, M) = Der (B, M).

called the

Proof. The construction of is completely formal. Define Q}B A=
@i B-db/ ~, where db are just formal symbols, and ~ is the sub-
module generated by the relations da, d(b1+bs)—dby —dba, d(b1by)—
bidby — badby with a € A,b1,bs € B. Define d : B — QlB/A,b —
db. Given an A-linear derivation dp; : B — M, we can define
b : Q}B/A — M,db — dp(b). We omit the verification that the

construction is well-defined and universal. O

Lemma 3.3.5. Let A, B, A’ be rings. Assume we have ring ho-
momorphisms A — B, A — A’. Consider the push-out B’ :=
A’ ®4 B. There is a natural isomorphism of B’'-modules Q}B,/A/ =

B'®pQp, = A @4,

QIB’/A’ QIB/A
B +———B
A +—— A

Remark 3.3.6. In particular, Q}B[ffl]/A[ffl] & QE/A[f_l]. And
1 ~ 1 1
Qprayam = Lpjal 15,4

Proposition 3.3.7. Let A,B,C be rings, f : A— B,g: B — C
two ring homomorphisms. Then there exists an exact sequence of
C-modules:
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Proof. [3] Tag O0RS. O

Proposition 3.3.8. Succeeding the notations above, and assume
that g is surjective with kernel I C B. Then Q%J/B =0 and there
exists an exact sequence of C-modules:

The left arrow is just the universal derivation of B relative to A
tensoring with identity on C.

Proof. [3] Tag 00RU. O

Proposition 3.3.9. Let A, B be rings, f : A — B a ring homo-
morphism. Write I for the kernel of the diagonal homomorphism
A:B®sB — B,by @by v biby. Then I/I? has a B-module
structure and identifies with the Kdhler differential QE/A via the
A-linear derivation b—b®1—1Qb.

Proof. I/I? is indeed a B-module as B = (B ®4 B)/I. Indeed, I
is generated by b®1 —1®b for b € B. Given ' € B we can check
V- (b®1-1®b) =bY ®1—1®0bb. We omit the verification that
d:b—b®1—-1®bis indeed an A-linear derivation. Now given
another A-linear derivation dp; : B — M, wemap b® 1 —1®b to
dpr(b). O

With the identification above we can construct now the Kahler
differential for general schemes.

Definition 3.3.10. Let X, .S be schemes f: X — S a separated
morphism. Let Z be the ideal sheaf corresponding to the diagonal
morphism A : X — X xgX. We define the sheaf of differentials
of X relative to S, or the cotangent sheaf of X relative to S to

be QY g 1= A'Z,

Remark 3.3.11. Note that Qﬁ( Iy is quasi-coherent by definition.
Lemma 3.3.12. Let X,S be schemes f : X — S a separated
morphism. Take an affine open Spec A C X mapping to an affine
open Spec R C S. Then Qﬁg/g\specA &~ Qi‘/R.

Remark 3.3.13. One can also follow the definition of differen-
tials of rings and define the differentials of schemes to be the glue

of local differentials of rings and showing that it is precisely the
pullback of the kernel of diagonal morphism.
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Lemma 3.3.14. Let X,S be schemes f : X — S a separated
morphism. Let S’ be another scheme and g : S’ — S a morphism
of schemes. Define X' := X xg S’ to be the scheme after base
change. Denote the projection X' — X as g’. Then there is a
natural isomorphism of Oxr-modules Q%{'/S’ = gl*Q.%(/S'

Q Q

1 1
X'/8 X/8

! |
! |
! |

X +— X

T
S +— 8§
Proposition 3.3.15. 4.0.11 Let X,Y,S be schemes, f : X —
Y,g: Y — S be morphisms. There exists an exact sequence of
Ox -modules:

f*Q;/S - Qﬁf/s — Qﬁ(/y —0
Proof. This is just the scheme version of 3.3.7 O

Proposition 3.3.16. Succeeding the notations above, and assume
that f is a closed immersion with corresponding sheaf of ideals T
on X. Then Qﬁ(/y = 0 and there exists an exact sequence of
Ox -modules:

FT— Q55 = Qx5 — 0

Proof. This is just the scheme version of 3.3.8 O

We now start to state the relations between smoothness and
Kahler differential.

Lemma 3.3.17. Let X be a separated scheme over a field k. Let
x € X be a point with residue field k. There is an isomorphism of
k-vector spaces CT,X = (Qﬁ(/k)x ®ox., k-

Proposition 3.3.18. Let X,S be schemes and f : X — S a
morphism. Then f is formally unramified if and only if Qﬁ(/s =0.

Proposition 3.3.19. Let XY, S be schemes, f: X - Y, g:Y —
S be morphisms.

1. If f is formally smooth, then the sequence of Ox-modules is
exact and splits locally:

0— f*Q%//S — Qﬁ(/s — Qﬁf/y —0
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2. If go f is formally smooth, and the sequence above is exact and
splits locally, then f is formally smooth.

Corollary 3.3.20. Let X,Y, S be schemes, f: X =Y, g: Y — S
be morphisms. If f is formally étale, then f*Q%,/S = Qﬁ(/S'

To give the proof of 3.3.19 we need a construction of first order
thickening.

Definition 3.3.21. Let A be a ring, M an A-module. We define
the ring A[M] to be the A-module A ® M with the obvious mod-
ule addtion. Define the module multiplication as (a3 ®mq) - (a2 &
msa) := ajas®(armat+azm;). Equivalently, A[M] = Sym®% M /(Sym? M).

Lemma 3.3.22. Let A be a ring, M an A-module. The projection
A[M] — A is a first order thickening.

Lemma 3.3.23. Let A be a ring, M, N two A-modules, f: M —
N an A-module homomorphism. Then f induces a ring homo-
morphism A[M] — A[N],a®m — a® f(m). Thus the construc-
tion M +— A[M] is a functor from A—Mod to the category of first
order thickenings over A.

Remark 3.3.24. Indeed, if we restrict the category of first order
thickenings to the split first order thickenings (i.e. there exists a
ring homomorphism A — A’ such that A — A" — A =1d4), then
the functor is an equivalence of categories.

Proposition 3.3.25. Let R be a ring, A an R-algebra, M an
A-module. There is a bijection between the R-linear derivations
A — M and the ring homomorphisms A — A[M] that are R-
linear and satisfy A — A[M] — A = 1da, where the last arrow is
the usual projection.

Proof. Given an R-linear derivation d : A — M we have an R-
linear ring homomorphism f : A — A[M],a — a @ d(a). Con-
versely given an R-linear ring homomorphism f : A — A[M], it
necessarily has the form Id 4 ®&d for some R-linear map d: A — M.
One can check d is indeed a derivation. We omit the verification
that these two constructions are mutually inverse. O
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Proof of 8.3.19. We may reduce to the affine case X = Spec B,Y =
Spec A, S = Spec R. Denote f* (resp. g*) to be the ring homo-
morphism A — B corresponding to f (resp. g). To prove 1. it
suffices to construct a homomorphism 4 : 9}3 /R B®g 9}4 /R such
that do p = IdB@RQ}Q/R’ where p : b® da — b-dff(a) is the homo-
morphism B®p Q}L‘ /R QIB /R corresponding to the second arrow
in sequence. p rises to a ring homomorphism B[B ®p Q) / Rl =
B [Q}B / r)- We denote the ring homomorphism by abuse of notation
also with p. Note that p is a first order thickening, since the kernel
of p lies completely in QIB R Consider the diagram:

b—bddb
Bl 50— B
pT ,/’/// }ﬁ
1 “
B[B QR QA/R] a— fHa)®(10da) A

Since f* is formally smooth we get a lift B — B[B ®p Q}L‘/R].
The lift is R-linear, and its compose with the projection B[B ®p
Q}4 / g — B is identity on B. Therefore we get an R-linear deriva-

tion A\ : B — B®RQ}4/R, and the dotted arrow is just b — bBA(D).
By the universal property of Kéahler differentials we obtain a B-
module homomorphism 9 : QE/R — B®g QZ/R, db — A(b). One
sees now 6 o p(b ® da) = 6(b - dft(a)) = b® A(dff(a)) = b ® da.
For the 2. part we may by restriction to smaller affines assume
that the sequence splits. Consider the following diagram:

C/I «<— B

I

C<+— A

L
R

where I?2 = 0. Since f#og? is formally smooth we get a lift «’ such
that u'o ffog? = vog!. But the whole diagram does not necessarily
commute. One can check v—u/o f* is an R-linear derivation from A
to I. If we find a lift u : B — C, then similarly u—u' is an R-linear
derivation from B to I. Then we have v—u/o f# = (u—u')o f¥. This
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shows it suffices to find an R-linear derivation § : B — C such that
v—u'o ff = 5o f* and conclude that u := u'+6. The question now
degenerates to: Given an R-linear derivation d4 : A — I, can we
find an R-linear derivation 6 : B — I such that 64 = dp Ofﬂ? We
know that HomB,Mod(Q}B/R,I) — Homp_nMod(B ®4 QL/R,I) =
Hom A—Mod(Q}L; / ! ) is surjective since the sequence splits. But
HomaB,l\/[Od(Q}B IR I) corresponds to R-linear derivations B — I,

HomA,Mod(Qi‘ / g I) corresponds to R-linear derivations A — I.
And we are done. O

Proposition 3.3.26. Let X,Y be schemes, f: X — Y a morph-
ism. If f is formally smooth, then Qﬁ(/y 1s locally projective.

Proof. The problem is local, so we may assume X = Spec B,Y =
Spec A. Denote with ff : A — B the corresponding ring homo-
morphism. Take a surjection of B-modules M’ — M and consider

the diagram:
B
A

Since f is formally smooth we find a lift Id ® s from B to
B[M']. Therefore, given a homomorphism Q}, 4 — M of B-
modules, it corresponds to an A-linear derivation 6 : B — M,
which can be lifted to an A-linear derivation 8,y : B — M/,
which corresponds to a homomorphism Q}B /A M'. This implies

—E
|

!
B[M] f®0

HomB_Mod(Q}B/A, M) — HomB_Mod(Q}B/A, M) is surjective. [

Remark 3.3.27. If f is also locally of finite presentation, i.e.
smooth, then Qk y is also of finite type. A quasi-coherent module
is locally projective and of finite type if and only if it is locally free
of finite rank, See [3] Tag OONX. Therefore if f is smooth, then
Qﬁ( Y is locally free of finite rank.

Proposition 3.3.28. Let X,Y, S be schemes, f : X — Y a closed
immersion with sheaf of ideals Z, g : Y — S a morphism.

1. If go f is formally smooth, then the sequence of Ox-modules is
exact and splits locally:

0= f*T — f*Qy/5 = Qx5 = 0
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2. If g is formally smooth, and the sequence above is exact and
splits locally, then g o f is formally smooth.

Proof. We reduce to the affine case S = Spec R, Y = Spec A, X =
Spec A/I. Denote g* to be the ring homomorphism R — A corres-
ponding to g. Denote p: A/I®41 — A/I®AQ}4/R,a®b — a®db
to be the A/I-module homomorphism corresponding to the second
arrow in the sequence.

For the first part we need a homomorphism ¢ : A/I ®4 9}4 /R
A/I ®4 I such that 6 o p = Idy/;g,7- Consider the following
diagram:

AJT A P — A

T e
e
A/ ——

We get a lift u as g o f is formally smooth. And the usual pro-
jection p’ : A — A/I? is another lift. One checks then p’ —u o p
is an R-linear derivation A — I/I?, which gives an A-module ho-
momorphism ¢’ : Q,lél/R — I/I? sending da to p/(a) — u o p(a)
and hence an A/I-module homomorphism ¢ : A/I @4 QY /R
I/1% da — p'(a) —uop(a). We have then dop(a®b) = §(a®db) =
a® (') —uopl)=axp (b)) =a®bforbe I/I%

For the second part we set the diagram:

B/J ¢ A/l +— A

_ |
BYE R

As g is formally smooth we have a lift v. To give a homomorphism
A/I — B we need to modify v a little bit to v’ such that v'|; = 0.
If v/ exists, then § := v/ — v is an R-linear derivation such that
§lr = —v|;. Note that v|;2 = 0 as v(I?) € J? = 0 and hence
—vl|; gives an A/I-module homomorphism I/I? — J. But the
map HomA/I—Mod(A/I ®A 9,14/37J> - HomA/I—Mod(I/I27J) is
surjective as the sequence is exact and splits. Therefore we get a
homomorphism of A/I-modules A/I @4 /p — J and therefore

a homomorphism of A-modules Qh /R J. This gives an R-linear
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derivation § : A — J with d|; = —v|;. v/ := 0 4 v is then a ring
homomorphism A — B with v/|; = 0 and hence factors through
AJT. O

3.4 Jacobian Criterion

We now start to state perhaps the most important smoothness
criterion. But before that we need a little bit preparation.

Proposition 3.4.1. Let X, S be schemes, g : X — S a morphism.
g is smooth if and only if for each point x € X there exists a
neighbourhood x € U and sections fi,..., fn such that the map f
from U to A% induced by f1,..., fn is étale.

f: X fi

U AT

ol

S
In this case, Qﬁ(/S]U =@, Oy - df;.

Proof. The if part is clear as AG — S is smooth. For the only
if part we assume g to be smooth. Without loss of generality
we assume U = SpecB,S = SpecR are affine. Write A :=
R[X1,...,X,] We may by restriction to smaller affines assume
that QE /R is a free module as g smooth implies Qﬁ( /s is finite loc-

ally free. Say we have a basis (w1,...,wp) with w; = Z§:1 bj -
dfj. Then by localizing at nonzero b;’s (we shrink the affine
open Spec B even smaller) and linear cancellation we can assume
(dfy...,dfn) is a basis (n might differ from k). Then take the
morphism f : Spec B — A%} = Spec A induced by f1,..., f, We
obtain immediately the isomorphism Q}B /R = B ®r 9}4 R We
have the exact sequence

Hence Q}B /A is 0, hence f is formally unramified. Furthermore the
sequence
0= B®aQy = Qpp = Qpju =0

is exact and splits. By 3.3.19 we have f is formally smooth. f
being of finte type is clear. O
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Theorem 3.4.2 (Jacobian Criterion). Let i : Z — A% be a closed
immersion locally of finite presentation with codimension r. For
any point z € Z let f1,..., fr be the sections in Ox . that cut out
Z locally. Then Z is smooth over R in a neighbourhood of z if and

only if the Jacobi matriz J = (5))]& (z)) has rank v in residue
field k(z).

,

Z : W\
\ /

Spec R

Proof. We need first of all a lemma.

Lemma 3.4.3. Let A be a local ring with residue field k. An A-
linear map M : A" — A" is injective and splits if and only if M
s injective as a k-linear map k" — k™.

Proof. [4] Lemma 6.3. O

Denote Z = Spec B,A = R[X;,...,X,]. Let I be the ideal
corresponding to ¢, p the prime ideal corresponding to z. Then
I)I? ® k(z) = (I/1?),/p(1/1?), is an r-dimensional vector space
over k(z). Take fi,...,f. € I/I? such that they form a basis in
I/I?®k(z). Note that they generate I, locally around z. Consider
the diagram:

of:
r <0XJ1)ZJ n
Di—1 By ei ———— D, By - dX;

Einil lg

00— (I/I2 —————fa(3®91) oS EN
/s )’}infFZ" LA ARy B/R

Jj=10X;

The second row is exact and splits. By the previous lemma the
diagram keeps exact after tensoring with k(z). But then the
left vertical arrow becomes bijective, which implies the composi-
tion from @;_, k(z) - e; to k(z) ® 9,14/1% is injective, hence J7 =
(g—;é)ij ® k(z) is injective in k(z), hence it has rank r.

0f;

Conversely assume J has rank r in k(z). Then (—) ~ isinjective
17]

)

0X;
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and splits. We have the following diagram:

of;
0 — Do Bp-e % D=, By - dX;
€i'—>le lg

2 1 1
s )'}de'— n 2 dX<B @ QA/R)p i/
i i= j

J=10X;

The left vertical arrow is an isomorphism after tensoring with &(z).
By Nakayama’s lemma the arrow itself is already an isomorphism
of. By-modules. Hence the homomorphism f; — df; is injective
and locally splits. Therefore z has a small smooth neighbourhood.

O

Remark 3.4.4. One should compare this amazing result with the
Jacobian criterion in classical differential geometry. It shows that
the definition of formal smoothness indeed grasps the kernel of
smoothness.

3.5 Regularity and Smoothness

Recall that a scheme X is called nonsingular or regular if each
stalk Ox , is a regular local ring. With the geometric words, the
dimension of the Zariski tangent space is equal the dimension of
the local ring. We will see in this section that regularity and
flatness are closely related to smoothness. The proofs are however
quite technical and will be omitted. A general reference is [4]
Lecture 6.

Theorem 3.5.1. Let X be a scheme locally of finite type over a
field k. Let x € X be a closed point with residue field k(x) which
is separable over k. If the stalk Ox . is regular, then X is smooth
in a neighbourhood of x.

Proof. [4] Theorem 6.11. O

Corollary 3.5.2. Let X be a nonsingular scheme over a perfect
field k (e.g. k is algebraically closed or has characteristic 0). Then
X is smooth.
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Theorem 3.5.3. Let X be a scheme over a field k. Then the
following are equivalent.

1. X is smooth over k.

2. X is geometrically nonsingular, i.e. for an arbitrary algebraic-
ally closed field I over k, the scheme X Xy [ is nonsingular.

3. There exists one algebraically closed field | over k such that
X X 1 18 nonsingular.

Proof. [4] Theorem 6.8. O

Theorem 3.5.4. Let X, S be schemes, f : X — S be a morphism
locally of finite presentation. Then the following are equivalent.
1. f is smooth.

2. f is flat and has smooth fibres.

8. f is flat and has smooth geometric fibres, i.e. for an arbit-
rary algebraically closed field k and an arbitrary scheme morphism
Speck — S, the pullback X Xgpeck S — Speck is smooth.
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Chapter 4

Cohomology

In this chapter we develop the very important cohomological tools
for study of coherent sheaves. We will use Grothendieck’s efface-
able d-functors as our basic cohomology theory, whose properties
and related propositions will be mentioned shortly without a proof.
A reference can be found in [3] Tag 010P. There is a more general
way to construct derived functors on arbitrary abelian categories
using the theory of triangulated categories originated from algeb-
raic topology. For details see the Appendix.

We then start to give the basic facts of cohomology theory using
effaceable functors. The motivation is that we want to measure
how inexact a left exact functor on the right side is. That is, given
a left exact functor F : A — B, we want a family of functors
H? : A — B such that H° = F and given any exact sequence
0— A— B — C — 0, there exists a long exact sequence:

0 — H(A) — HO(B)

50
HL(A) —/H’-tl(B) — HY(0)

—"

HE(A) —— -

HO(C)

|

where §' are called connecting morphisms. Since H? = F, it ex-
tends the exact sequence 0 — F(A) — F(B) — F(C).

Definition 4.0.1. Let A, B be abelian categories. A (cohomo-
logical) d-functor is a collection of the following data:

o7
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1. A family of functors F': A — B, i > 0.

2. For each short exact sequence 0 - A — B — C' — 0 and each
i > 0 a morphism & p - : F(C) = FT(A).

They should satisfy:

1. For every shor exact sequence 0 - A — B — C — 0 the
following sequence is exact:

0 — FO(A) — FYB) — FOO)
Koo

Fl(A) 7 FUB) — FY(0)
Sme

FAHA) —— -

2. For every morphism of short exact sequences (A - B — C) —
(A — B’ — ") and every i > 0 the diagram below commutes:

i
5A,B,c

Fi(C) Fiti(A)
l |

Fi(C') —— FitL(A)

5A/,B/,C/
Remark 4.0.2. Note that by definition F° is left exact.

Definition 4.0.3. Let A, B be abelian categories, (F%);, (G); two
0-functors, a morphism of j-functors 7 — G is a collection of
natural transformations ¢ : F* — G* such that for each i > 0 and
every short exact sequence 0 - A — B — C — 0 the following
diagram commute:

g“(C) —Z> gz+1(A)

Definition 4.0.4. Let A, B be abelian categories, /cF : A —
B a left exact functor. We consider the category of é-functors
extending F: the objects are d-functors (F*); such that F° = F,
and the morphisms are morphisms (¢%); of §-functors with t = Id.
A universal §-functor extending F is an initial object in this
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category. If (F'); is a universal §-functor extending F, we also call
it the right derived functor of F, denoted with R'F.

Remark 4.0.5. By the universal property of initial objects, the
universal d-functor extending F, if exists, is unique up to unique
isomorphism.

Definition 4.0.6. Let A, B be abelian categories, F : A — B a
left exact functor. Let (F?); be a universal §-functor extending F.
We call F(A) the i-th cohomology of A (relative to F) for
an object A € A.

Definition 4.0.7. Let A, B be abelian categories, (F*); a J-functor.
An object A € A is called F-acyclic, if F(A) =0 for all i > 1.

Definition 4.0.8. Let A, B be abelian categories. A functor F :
A — B is called effaceable if for any object A € A, there exists
a monomorphism A < A’ such that F(A’) = 0.

Theorem 4.0.9. Let (F'); be a §-functor such that F* are efface-
able for all i > 1, then (F'); is a universal §-functor extending
FO.

Theorem 4.0.10. Let A, B be abelian categories, F : A — B
a left exact functor. Assume A has enough injectives. Then the
universal d-functor extending F exists. The construction goes as
follows: For an object A € A, take an injective resolution of A,
i.e. an evact sequence 0 — A — Iy — I} — ---. Define H'(A)
to be the i-th cohomology of the sequence 0 — F(Ip) — F(I1) —
.. This is an effaceable delta-functor extending H® = F, hence
universal.

Sketch of proof. The hardest part is to show that it is well-defined.
Indeed any choice of injective resolutions are homotopy equivalent
and hence have the same cohomology. It is effaceable because
given an injective object I, there is an injective resolution 0 —
I — I — 0. By construction H*(I) =0 for i > 1. O

Proposition 4.0.11. Let A, B be abelian categories, F : A — B
a functor having a right derived functor. If for an object A € A
there exists a resolution 0 — A — Cy — C1 — --- where C;
are R'F-acyclic, then the i-th cohomology of the sequence 0 —
F(Co) = F(C1) = -+ coincides with R\F(A).
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Remark 4.0.12. This proposition implies to compute F?(A) it
suffices to use an F-acyclic resolution , chop off the term A and
compute the cohomology of F°(C*).

Remark 4.0.13. We have also the dual notions for right exact
functors: coeffaceable, projective resolutions, left derived functors
and so on. We omit the constructions here.

4.1 Sheaf Cohomology

We now consider the left exact functor F +— I'(X, F) from the cat-
egory of Ox-modules on a scheme X to the category of I'(X, Ox)-
modules.

Lemma 4.1.1. The derived functor of I'(X, —) coincides with the
derived functor of I'(X, F(—)) from the category of Ox-modules
to the category of abelian groups, where F' is the forgetful functor
from the category of Ox-modules to the category of sheaves of
abelian groups.

Definition 4.1.2. Let X be a scheme, F an Ox-module. We
define H'(X, F) := R'T'(X, F) to be the i-th sheaf cohomology
of F, where R'T is the i-th derived funtor of I'(X, —).

Remark 4.1.3. Do not mix the sheaf cohomology of a single
object of Ox-module with the cohomology of a complex with val-
ues in Ox-modules. There are however indeed lots of relations
between them. For details see the Appendix.

Proposition 4.1.4. Let X be a scheme and M an injective Ox -
module. Then M is flasque, i.e. for any open V C U in X the
restriction map M(U) — M(V') is surjective.

Proof. We have the natural identification M(U) = Hom((iy 1Oy, M),
where (iy); is the extension by zero, i.e. for a sheaf F on U,
(ighF (W) = F(W) for W C U and (ig))F(W) = 0 else. Then
there is an injection (iy )0y — (ig)1Oy. As M is injective, the
induced map Hom((i)1Oy, M) — Hom((iy 1Oy, M) is surject-
ive. By the identification above we get the result. O

Theorem 4.1.5. Let X be a scheme. The category of Ox -modules
has enough injectives.



4.1. SHEAF COHOMOLOGY 61

Proof. [1] Proposition I11.2.2. O

Proposition 4.1.6. Let F be a flasque sheaf on a scheme X, then
HY(X,F)=0 fori>1,ie F is-acyclic.

Proof. [1] Proposition II1.2.5. O

Remark 4.1.7. By 4.0.11, the cohomology of a flasque resolution
of an Ox-module also computes its sheaf cohomology.

Lemma 4.1.8. Let X be an affine scheme. For any quasi-coherent
sheaf M on X, its higher cohomology vanishes, i.e. H' (X, M) =0
for all i > 1.

Next we state the theory of Cech cohomology, which is a very
important tool to compute the sheaf cohomology.

Definition 4.1.9. Let n be an integer and I,J C {0,...,n} two
subsets, we write I < J if I C J. Given a topological space X
and n + 1 opens Uy, ...,Uyn, We define Ur := (,c; U;. Given an
abelian sheaf F (i.e. sheaf with values in an abelian category),
and two indices I < J, we define d; ; to be the restriction map
F(Ur) = F(Uy).

Definition 4.1.10. Let X be a scheme, X = (J!' , U; a finite open
cover, denoted 4, F an abelian sheaf on X. The k-th Cech group
of F is defined as C*(L; F) := D rj=k+1 I'(U1, F). We define the
Cech differential map dy, : C*(U; F) — CF1(U; F) as

(=1)d; g, if J=TU{j}

U, F)—=TIU;,F) = { 0. olse

Remark 4.1.11. Note that to give a map from a finite direct sum
to a finite direct sum is the same as to give maps between each
pair of components, as what we did in the definition.

Lemma 4.1.12. djy1 ody, = 0. It follows then the Cech groups
with the differentials is a complez.

Definition 4.1.13. The Cech groups together with the differen-
tials are called the Cech complex relative to Y with coefficients
in F and its k-th cohomology H(i(; F) is called the k-th Cech
cohomology of F relative to 4.
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Remark 4.1.14. The motivation of Cech cohomology should be
considered as: How is the sheaf enriched when we restrict the sheaf
to smaller opens? The Cech cohomology gives a nice layer cut of
collections of local sections, avoiding them to be restrictions of
some global sections by modulo out the image of the former Cech
group, and ensuring that their restrictions to smaller opens vanish
by taking the kernel of the differential map.

We next show that in good conditions the Cech cohomology
agrees with the sheaf cohomology. Therefore the Cech cohomology
gives a relatively easy way to compute the sheaf cohomology.

Lemma 4.1.15. Let X be a scheme, 8 : X = |J;_,U; a finite
open covering and F an abelian sheaf on X. We have H(U; F) =
X, F).

4.2 Ext Functor
4.3 Higher Direct Images
4.4 Serre Duality

4.5 Hilbert Polynomial



Chapter 5

Curves

5.1 Adic Spectrum

5.2 Divisors and Riemann-Roch
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Appendix A

Homological Algebra

A.1 Category of Complexes
A.2 Derived Category
A.3 Derived Functor
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Appendix B

Serre’s GAGA
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