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Preface

The notes are aimed to be a summary of all contents in foundations
of algebraic geometry, which are based on the lecture courses Al-
gebraic Geometry I and Algebraic Geometry II at the Universität
Bonn. The whole story is separated into five parts: Schemes, Mod-
ules, Smoothness, Cohomology and Curves.
To make stuffs well categorized I switched the order of some con-
tents, so the order of contents in notes actually differ from the
usual organized way in Bonn. For example the theory of projective
schemes will be separated into the construction of projective space,
the (very) ample line bundles, Serre duality, projective curves and
Riemann-Roch on it, and so on. So the order of all contents
may confuse the beginners.
The notes are also not self-contained. Indeed, I omitted all the
proofs of easy propositions. The definition of ”easy” here is, if
one has gone over the whole courses AG I, AG II, he/she should be
able to figure out a proof for this proposition within ten minutes.
But for beginners it will take sometimes hours. I also did not
include difficult proofs of some big theorems, there might
be only a sketch of proof which just gives the intuition and frame.
But A reference will always be given where one can find the whole
proof. The only proofs I typed down are those I didn’t under-
stand when I was learning the stuffs (I type them down and try
to understand them thoroughly, and they may also be hard points
for other intermeidates), and those proofs the techniques in which
are of great importance and can be applied frequently. Moreover,
I only give references of commutative algebra facts instead of a
proof when they are crucial for a proposition, since I believe that
these are just technical details and do no good to the build-up of
the intuition in algebraic geometry. Based on these three points, I
believe these notes are not suitable for AG beginners, but
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might be very helpful as toolbook after one finishes the
whole journey in the foundations of algebraic geometry.

August 2022
Bonn



Chapter 1

Schemes

1.1 General Sheaf Theory

The Motivation of sheaves is that we want to understand how local
functions on a manifold ”glue” together to be a global function.
For instance, consider the complex manifold CP1 with homogen-
eous coordinate [z, w]. We have the cover U0 = {w ∕= 0} and
U1 = {z ∕= 0}, which are homeomorphic to C. Then a mero-
morphic function on U0 is defined by f([z, w]) = F ( z

w ) for some
meromorphic function F on C. Similarly we have g([z, w]) = G(wz )
on U1. Note we can restrict f and g onto U0∩U1 to get two mero-
morphic functions on it. If F (x) = G(x−1), then f and g agree on
the overlap and define a global meromorphic function.
In algebraic geometry, things work almost in the same way, just by
replacing meromorphic functions with polynomials. So it is worth
spending a whole section to have a lesson in sheaf theory.

Definition 1.1.1. A presheaf F on a topological space X is a
functor

F : OuvopX −→ C,

where OuvX is the category whose objects are open sets in X and
arrows are inclusions of open sets. We call F(U ↩→ V ) =: resVU the
restriction from F(V ) to F(U). We also write f |U for resVU(f).
A sheaf F is a presheaf satisfying the addtional conditions:

1. (locality) For s, t ∈ F(U), if there exists an open cover U =󰁖
i Ui such that s|Ui = t|Ui for all i, then s = t.

1



2 CHAPTER 1. SCHEMES

2. (gluing) If U =
󰁖

i Ui is an open cover of an open and si ∈
F(Ui) are functions on Ui satisfying si|Ui∩Uj = sj |Ui∩Uj , then
there exists an s ∈ F(U) such that s|Ui = si for all i.

Remark 1.1.2. If F is a sheaf, then the glued element s in 2. is
unique by 1..

Convince yourself that this definition really makes sense with
the example CP1, where one maps an open to the set of all mero-
morphic functions on it.

Definition 1.1.3. We also write Γ(U,F) for F(U), which turns
out to be more useful in the cohomology theory.

If we have a space with a nice basis, then the information of
the sheaf on the basis is already enough to recover the whole sheaf,
asserted as follows.

Proposition 1.1.4. If X admits a basis B which is stable under
intersections, then given a functor F : Bop → C (the arrows in B
are inclusions, and note that B is a full subcategory of OuvX) there
exists a unique presheaf G on X valued in C such that G|B = F .

Remark 1.1.5. if the “presheaf” on B satisfies locality and glue-
ing, then the costructed presheaf G is already a sheaf.

Definition 1.1.6. Let F ,G be presheaves valued in C. A morph-
ism of presheaves φ : F → G is just a natural transformation of
functors.

F(V ) G(V )

F(U) G(U)

φV

resVU

φU

resVU

A morphism of sheaves is just a morphism of the underlying
presheaves.

Definition 1.1.7. Let F be a presheaf on X. The stalk of F at
x ∈ X is defined as

Fx := colim
x∈U,U⊆X

F(U)



1.1. GENERAL SHEAF THEORY 3

Note that the index of colimit is filtered, so we have a nice
representation of elements in Fx.

Proposition 1.1.8. Let F ,G be sheaves on X, φ : F → G a
morphism of sheaves. Then φU : F(U) → G(U) is injective (resp.
bijective), if the induced morphism on stalks φx : Fx → Gx is
injective (resp. bijective) for all x ∈ U .

Lemma 1.1.9. Succeeding the notations above, let ψ : F → G be
another morphism of sheaves. Then φ = ψ if and only if φx = ψx

for all x ∈ X.

Remark 1.1.10. This proposition shows that isomorphisms of
sheaves can be checked on stalks. However surjectivity on stalks
does not always imply surjectivity on each open. We define a
morphism of sheaves to be injective (resp. surjective, bijective)
if it is injective (resp. surjective, bijective) on stalks. They are
precisely monomorphisms (resp. epimorphisms, isomorphisms) if
the value category is abelian.

The next proposition tells us that we do not need to worry to
much about presheaves.

Proposition 1.1.11. Let F be a presheaf. Then there exists a
sheaf F̃ , unique up to unique isomorphism, called the sheafific-
ation of F , together with a map of presheaves ι : F → F̃ , sat-
isfying the universal property: For any morphism of presheaves
φ : F → G where G is a sheaf, there exists a unique morphism of
sheaves φ̃ : F̃ → G making the following diagram commute:

F F̃

G

ι

φ
∃!φ̃

Sheaves are often used to describe objects that ”live” on a
topological space, so we want also to ”transport” sheaves onto
another space if we have a map between spaces. Thus we now
define the pullback and pushforward of sheaves.

Definition 1.1.12. Let X,Y be topological spaces, f : X → Y a
continuous map.
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1. For a sheaf F on X we define the pushforward of F along
f to be the sheaf on Y :

f∗F(V ) = F(f−1(V ))

2. For a sheaf G on Y we define the pullback of G along f to
be the sheafification of the presheaf on X:

f−1G(U) = colim
f(U)⊆V

G(V )

Note the morphisms of sheaves can also be pushed forward
or pulled back in a natural sense. Thus one should consider the
pushforward and pullback as functors between the category of C-
valued sheaves on X and on Y .

Proposition 1.1.13. Succeed the notations above.

1. For x ∈ X we have

f−1Gx = Gf(x).

2. (Pullback-Pushforward Adjunction) There is a natural bijec-
tion

HomShX
(f−1G,F) ∼= HomShY

(G, f∗F),

i.e. f−1 and f∗ are adjoints.

Finally we discuss an important case: spaces with “structure”
sheaf. The idea is, to understand an geometric object we need
to understand the functions living on it. In many situations, the
sheaf of local functions has a ring structure (e.g. the sheaf of
meromorphic functions on CP1), i.e. they are sheaf of rings.

Definition 1.1.14. A ringed space (X,OX) is a topological
space X, endowed with a sheaf of rings OX : OuvopX → Rings,
called the structure sheaf. A locally ringed space is a ringed
space whose stalks are all local rings.

Definition 1.1.15. Amorphism of ringed spaces f : (X,OX) →
(Y,OY ) is a continuous map f : X → Y on the underlying topo-
logical space, together with a morphism of sheaves f 󰂒 : f−1OY →
OX . A morphism of locally ringed spaces is a morphism of
ringed spaces such that the induced map on stalks f 󰂒

x : (f−1OY )x ∼=
OY,f(x) → OX,x is a local ring homomorphism.
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Remark 1.1.16. By pullback-pushforward adjunction, to give f 󰂒

is the same as to give a morphism of sheaves f󰂐 : OY → f∗OX .

Convince yourself that this definition makes sense with the
example of two smooth manifolds φ : M1 → M2. φ󰂐 here is given
by the pullback:f 󰀁→ f ◦ φ.

1.2 Affine Schemes

We start with a generalization of the vector space kn, where k is
a field. Recall the Nullstellensatz:

Theorem 1.2.1 (Hilbert’s Nullstellensatz). Let k be an algebra-
ically closed field, then all maximal ideals in k[X1, . . . , Xn] are in
the form (X1 − a1, . . . , Xn − an).

Proof. [5] Theorem 1.7.

One sees from the Nullstellensatz that there is a bijection
between the points (a1, . . . , an) and the maximal ideals (X1 −
a1, . . . , Xn−an) in the polynomial ring, which inspires us to study
the spectrum of a ring defined as follows.

Definition 1.2.2. We define the spectrum of a ring A as the set
of all prime ideals:

SpecA := {p ⊂ A|p prime}

We define the vanishing locus of an ideal I ⊆ A as:

V (I) := {p ∈ SpecA|I ⊆ p}

Remark 1.2.3. Without further mention, all rings in the notes
are commutative with 1.

Proposition 1.2.4. We have

󰁟

i

V (Ii) = V

󰀣
󰁛

i

Ii

󰀤
.

V (I1) ∪ V (I2) = V (I1 ∩ I2) .

Proof. [5] Proposition 3.6.
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Definition 1.2.5. The vanishing loci of ideals as closed sets define
a topology on SpecA, which we call Zariski Topology.

Later we will endow SpecA with a sheaf containing its algeb-
raic structure, but now let’s develop some topological properties
first.

Proposition 1.2.6. Spec can be extended to a functor from Ringsop

to Top, sending a ring A to SpecA, and a homomorphism f : A →
B to a continuous map Spec f : SpecB → SpecA, Spec f(p) :=
f−1(p)

Lemma 1.2.7. SpecA is T0.

Definition 1.2.8. Let f ∈ A be a ring element. We call D(f) :=
SpecA\V (f) a principal open (or a distinguished open).

Lemma 1.2.9. The set of all principal opens in SpecA forms a
basis of Zarisiki Topology and is stable under intersections. In
particular, D(f) ∩D(g) = D(fg)

Proposition 1.2.10. SpecA is quasi-compact.

Proof. By the Alexander subbasis lemma, it suffices to prove that
for each open covering of the form SpecA =

󰁖
iD(fi), there ex-

ists a finite subcover. Now SpecA =
󰁖

i∈I D(fi) is equivalent to󰁗
i∈I V (fi) = ∅, which is equivalent to that the ideal generated

by fi contains 1. That means that there exists f1, . . . , fn among
all fi and a1, . . . , an in A such that

󰁓n
j=1 ajfj = 1. By the same

argument we see SpecA =
󰁖n

j=1D(fj)

Proposition 1.2.11. The principal open D(f) in SpecA is homeo-
morphic to SpecA[f−1]. The closed locus V (I) is homeomorphic
to SpecA/I.

Corollary 1.2.12. Let Ared := A/Nil(A) be the reduced ring of
A. Then SpecA=SpecAred.

Lemma 1.2.13. Let φ be a ring homomorphism A → B. Then
the image of D(f) ⊆ SpecB under Specφ is D(φ(f)) ⊆ SpecA.

Lemma 1.2.14. SpecA is irreducible (i.e. it can’t be written
as the union of two proper closed subsets) if and only if Nil(A) is
prime. This is in particular the case when A is an integral domain.
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Proposition 1.2.15. Every irreducible closed set in SpecA has a
unique generic point.

Theorem 1.2.16 (Generalized Hiblert’s Nullstellensatz). Let A
be a ring. Then we have two bijections:

1. There is a bijection between the closed subsets of SpecA and
the radical ideals in A, by sending V ⊆ SpecA to I(V ) :=󰁗

p∈V p, and I ⊆ A to V (I).

2. There is a bijection between the irreducible closed subsets of
SpecA and the prime ideals in A, by sending V ⊆ SpecA to
its generic point, and p ⊆ A to V (p).

Proof. [5] Theorem 1.17.

Lemma 1.2.17. If A is a Noetherian ring, then SpecA is a
Noetherian topological space (i.e. every descending chain of
closed subsets stabilizes).

Remark 1.2.18. The converse does not hold in general. Consider
A := k[X1, X2, . . . ]/(X

2
1 , X

2
2 , . . . ). We see that SpecA has only

one point (X1, X2, . . . ), but this ideal is not finitely generated.

Lemma 1.2.19. The dimension of SpecA is equal to the Krull
dimension of A. (We define the dimension of a T0-space X to be
the maximal length of specializations x1 ⇝ x2 ⇝ · · · ⇝ xn)

We now start to talk about the algebraic structure of SpecA

Definition 1.2.20. We have a contravariant functor from the
basis category of all principal opens to Rings:

F : Bop → Rings,

D(f) 󰀁→ A[f−1]

This functor satisfies locality and gulability, hence defines a sheaf
of rings OSpecA on SpecA. Thus (SpecA,OSpecA) becomes a
ringed space. We call a ringed space an affine scheme if it is
isomorphic to (SpecA,OSpecA) for some ring A. We denote since
now the ringed space directly with SpecA, and its underlying to-
pological space with |SpecA|.
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Remark 1.2.21. The structure sheafOSpecA has the explicit form

Γ(U,OSpecA) = lim
D(f)⊆U

A[f−1].

In particular, Γ(SpecA,OSpecA) = A, since SpecA = D(1).

Lemma 1.2.22. SpecA is a locally ringed space, and OSpecA,p
∼=

Ap.

Definition 1.2.23. We define the category of affine schemesAffSch
to be the full subcategory of the category of locally ringed spaces,
whose objects are all affine schemes.

Theorem 1.2.24. Spec can be extended to a functor Ringsop →
AffSch, by sending a ring A to SpecA, and a homomorphism
f : A → B to Spec f := (|Spec f |, Spec f󰂐), defined as

|Spec f | : |SpecB| → |SpecA|,
p 󰀁→ f−1(p).

Spec f󰂐 : OSpecA → f∗OSpecB :

OSpecA(D(s)) OSpecB(D(f(s))

A[s−1] B[f(s)−1]

∼=

f [s−1]

∼=

Remark 1.2.25. We have actually only defined Spec f󰂐 only on
principal opens. But this can be extended to arbitrary opens using
the universal property of limits:

limD(f)⊆U OA(D(f)) ∼= OA(U)

OA(D(fi)) OA(D(fj))

limD(f)⊆U f∗OB(D(f)) ∼= OB(U)

f∗OB(D(fi)) f∗OB(D(fj))

∃!

The functor above is actually an equivalence of categories. In-
stead of proving this we will show a more general result.
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Theorem 1.2.26. Let (X,OX) be a locally ringed space, SpecB
an affine scheme. Then there is a natural bijection

Hom((X,OX), SpecB) → Hom(B,Γ(X,OX)).

Proof. [3] Tag 01I1

Corollary 1.2.27. The functor Spec is an equivalence of categor-
ies between Rings and AffSch.

Definition 1.2.28. We define the affine space An
k over a field k

to be An
k := Spec k[X1, . . . , Xn].

1.3 Schemes and Morphisms

We now come to the definition of the central objects in algebraic
geometry.

Definition 1.3.1. A scheme X is a locally ringed space with
an open cover X =

󰁖
i Ui, such that each Ui is an affine scheme.

A morphism of schemes is just a morphism of locally ringed
spaces.

Proposition 1.3.2. Let X be a scheme, and U ⊆ X be a locally
ringed subspace. Then U is also a scheme.

Proof. Just note that for an affine open SpecA ⊆ X, SpecA ∩ U
can be covered by DSpecA(f) with some f ∈ A, which are all
affine.

Definition 1.3.3. Let X be a scheme, and x ∈ X be a point. We
define the residue field at x to be OX,x/mx, where OX,x is the
stalk of the structure sheaf at x, and mx is its unique maximal
ideal.

Lemma 1.3.4. Let SpecA be an affine scheme. The residue field
at a point p ∈ SpecA is just FracA/p.

The innovative philosophy by Grothendieck suggests that we
should consider the properties of morphisms rather than taking
effort in the properties of schemes itself. So we will only give
several properties of scheme objects here. Then we start to work
on morphisms.



10 CHAPTER 1. SCHEMES

Definition 1.3.5. A scheme X is called quasi-compact, if its
underlying topological space is quasi-compact. It is called locally
Noetherian, if there exists an affine cover X =

󰁖
i SpecAi such

that each Ai is a Noetherian ring. It is called Noetherian, if it
is locally Noetherian and quasi-compact.

Lemma 1.3.6. A scheme is noetherian if and only if it has a finite
affine cover X =

󰁖n
i=1 SpecAi such that each Ai is a Noetherian

ring.

Lemma 1.3.7. Let X be a scheme, X =
󰁖

i SpecAi be an affine
cover. Then

dimX = sup
i

dimAi

Definition 1.3.8. A scheme X is called reduced, if the stalk
OX,x is a reduced ring for all x ∈ X.

Lemma 1.3.9. An affine scheme SpecA is reduced if and only if
A is a reduced ring.

Definition 1.3.10. A scheme X is called integral, if OX(U) is
an integral domain for all U ⊆ X affine.

Lemma 1.3.11. An affine scheme SpecA is integral if and only
if A is an integral domain.

Proposition 1.3.12. A scheme X is integral if and only if it is
irreducible and reduced.

Proof. Assume that X is integral. If X is reducible, then one
finds disjoint opens U1, U2 ⊆ X. Taking affine opens SpecA1 ⊆
U1, SpecA2 ⊆ U2, we conclude that

SpecA1 ∪ SpecA2 = SpecA1

󰁤
SpecA2

∼= SpecA1 ×A2

is affine, but A1×A2 is not integral, a contradiction. Reducedness
is clear, as localization of integral domains is again integral domain
and hence reduced.
Now assume that X is irreducible and reduced. Take U ⊆ X
affine. Then U is also irreducible and reduced. Hence Nil(A) = 0
is a prime ideal, and U is an integral domain.
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Definition 1.3.13. A scheme X is called nonsingular, or reg-
ular if it is locally noetherian and the stalk OX,x is regular for all
x ∈ X.

Lemma 1.3.14. An affine scheme SpecA is nonsingular if and
only if A is noetherian and regular.

Like the three definitions above, there are actually two major
kind of algebraic properties on schemes: stalk-local properties and
affine-local properties.

Definition 1.3.15. A scheme property P is called stalk-local, if
there is a ring property Q, such that a scheme X has property P
if and only if all stalks OX,x have property Q.

Definition 1.3.16. A scheme property P is called affine-local, if
for an arbitrary affine scheme SpecA the following two conditions
hold:

1. SpecA has property P implies that D(f) = SpecA[f−1] has
property P for all f ∈ A.

2. If there exists f1, · · · , fn ∈ A such that
󰁖n

i=1D(fi) = SpecA
(i.e. fi generate the unit ideal in A), and all D(fi) have
property P , then SpecA has property P .

It follows then immediately from the definition that reduced-
ness and regularity are stalk-local. Integrality is affine-local.

Proposition 1.3.17. stalks-local properties are affine-local.

In general the definition of an affine local property is given in
the form: X has P if and only if U has P for all U ⊆ X affine.
It is however really hard to check properties on each affine open,
since we even do not know how many affine opens there are in a
scheme. Luckily we have the following theorem which asserts that
it will be suffice to just check on one open affine cover.

Theorem 1.3.18 (Affine Communication Lemma). Let P be an
affine-local property. Then X has property P if and only if there
exists an affine cover X =

󰁖
i Ui such that each Ui has property P.

Proof. [3] Tag 01OO.
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Now we can devote ourselves in the long journey of studying
the properties of morphisms. One special case is that we want
to study all schemes lying over a specific scheme (for instance,
Spec k), which motivates the following definition.

Definition 1.3.19. We call Sch/S the category of schemes
lying over S. Its objects are tuples (X, fX) where X is a scheme
and fX is a morphism from X to S, which we call the structure
morphism. The morphisms g in Sch/S are scheme morphisms
X → Y making the following diagram commute:

X Y

S
fX fY

g

Theorem 1.3.20. The fibre product Y ×X Z exists for all X,Y, Z
in the category of schemes. If X = SpecA, Y = SpecB,Z =
SpecC, then Y ×X Z = SpecB ⊗A C.

Proof. [1] Theorem II.3.3. The basic idea is to glue SpecB⊗AC for
affine opens SpecB, SpecC in Y, Z mapping to SpecA in X.

Remark 1.3.21. It is in general not true that |Y ×XZ| = |Y |×|X|
|Z|. Consider the product of two affine line A1

k ×Spec k A1
k. It

is just Spec k[X] ⊗k k[X] = Spec k[X,Y ]. But k[X,Y ] contains
apparently more prime ideals than |Spec k[X]|× |Spec k[X]|.

The category of schemes has thus good properties ensuring us
to pull back schemes along morphisms between base schemes.

Definition 1.3.22. A property P of scheme morphisms is said to
satisfy
1.COMP, if it is stable under compositions.
2.BC, if it is stable under base change, i.e. given f : Y → X with
property P satisfying BC, then for any cartesian square

Z ×X Y Y

Z X

fg



1.3. SCHEMES AND MORPHISMS 13

the morphism g also has property P .
3.LOCT, if it can be checked locally on target, i.e. f : Y → X
has property P , if for one open covering X =

󰁖
i Ui, all of f |f−1(Ui)

have P .
3.LOCS, if it can be checked locally on source, i.e. f : Y → X
has property P , if for one open covering Y =

󰁖
i Vi, all of f |Vi has

P .

The COMP is clearly of great importance. And in algebraic
geometry it is a general technique to pull back a scheme onto a
base scheme whose structure is well understood, for example an
algebraically closed field, so we would like to keep the property of
morphisms after base change. Therefore a sensible definition of
property should always ensure BC.

Remark 1.3.23. Without further mentions, all the properties of
morphisms defined in this notes actually satisfy COMP and BC.

Definition 1.3.24. A morphism of schemes is called a quasi-
compact morphism, if the preimage of any quasi-compact open
is quasi-compact.

Definition 1.3.25. A morphism f : Y → X is called locally of
finite type, if for all affine U ⊆ X, f∗OY (U) is a OX(U)-Algebra
of finite type. It is called of finite type, if f is locally of finite
type and quasi-compact.

Lemma 1.3.26. A morphism f : Y → X being locally of finite
type is affine-local on X, thus f is locally of finite type if and only
if there there exists an affine cover X =

󰁖
i Ui, such that f∗OY (Ui)

is a OX(Ui)-Algebra of finite type for each i.

Definition 1.3.27. Let X,Y be schemes, f : Y → X be a morph-
ism.
1. f is called an open immmersion, if f is an open embedding
on the underlying topological spaces and f 󰂒 : f−1OX → OY is an
isomorphism of sheaves.
2. f is called a closed immersion, if f is a closed embedding on
the underlying topological spaces and f󰂐 : OX → f∗OY is surject-
ive.
3. f is called a locally closed immersion, if it can be factored as
as j ◦ i, where i is a closed immersion and j is an open immersion.
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4. Y is called an open (resp. closed) subscheme of X, if one
has an open (resp. closed) immersion Y → X.

Lemma 1.3.28. Let X,Y be schemes, f : Y → X be a morphism.
1. If f is an open immersion, then Y ∼= f(Y ).
2. If f is a closed immersion, and X = SpecA is affine, then
Y = SpecA/I for some ideal I.

Lemma 1.3.29. Let A be a ring, I ⊆ A be an ideal, φ : A → A/I
be the canonical quotient map. Then the induced scheme morphism
Spec f : SpecA/I → SpecA is a closed immersion with topological
image V (I). We denote with V (I) since now the closed subscheme
SpecA/I.

Remark 1.3.30. We have according to the two lemmata a one-
to-one correspondence between closed subschemes of SpecA and
ideals of A. Also note that V (I) and V (I2) have the same under-
lying topological space, but different structure sheaves.

Proposition 1.3.31. Let U ⊆ X be an open subscheme, f : Y →
X be a morphism. Then the open subscheme f−1(U) in Y fits into
a cartesian square:

f−1(U) Y

U X

f |f−1(U)
f

Definition 1.3.32. Extending the notion of preimage, we define
the preimage of a subscheme Z ↩→ X under f : Y → X to be
Z ×X Y . Similarly, we define the scheme theoretic fibre of f
at a point x ∈ X to be Spec k(x)×X Y , where k(x) is the residue
field at x.

Proposition 1.3.33. If f : Y → X is a closed immersion, then
the preimage of an affine open SpecA ⊆ X is SpecA/I for some
ideal I.

More generally, the functor U 󰀁→ ker(f󰂐(U) : OX(U) → f∗OY (U))
is a sheaf, called the sheaf of ideals corresponding to f . It will be
thoroughly discussed in the next chapter.
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Definition 1.3.34. A morphism f : Y → X is called an affine
morphism if for all affine open U ⊆ X the preimage f−1(U) is
also affine.

Lemma 1.3.35. A morphism f : Y → X being affine is an affine-
local property on X, thus f is affine if and only if there exists an
affine cover X =

󰁖
i Ui such that f−1(Ui) is affine for each i.

Corollary 1.3.36. Closed immersions are affine.

Definition 1.3.37. A morphism f : Y → X is called a fi-
nite morphism, if f is affine and for all affine open U ⊆ X,
OY (f

−1(U)) is a finite OX(U)-module.

Lemma 1.3.38. A morphism f : Y → X being finite is an affine-
local property on X, thus f is finite if and only if there exists an
affine cover X =

󰁖
i Ui such that OY (f

−1(Ui)) is a finite OX(Ui)-
module for each i.

Definition 1.3.39. Let f : Y → X be a morphism of schemes.
The diagonal morphism ∆f : Y → Y ×X Y is defined through
the following diagram:

Y

Y ×X Y Y

Y X
f

f
id

id∆f

Proposition 1.3.40. The diagonal morphism is a locally closed
immersion.

Proof. Just note that we can take an affine cover Y =
󰁖

i Ui, then󰁖
i Ui ×X Ui is an open subscheme of Y ×X Y . The diagonal lies

completely in
󰁖

i Ui ×X Ui, and for each Ui ×X Ui, the preimage
of diagonal is Ui. Moreover, Ui → Ui×X Ui is a closed immersion,
corresponding to the multiplication map B ⊗A B → B, b1 ⊗ b2 󰀁→
b1b2. The result follows.

Definition 1.3.41. A morphism f : Y → X is called a quasi-
separated morphism, if the corresponding diagonal morphism
∆f is quasi-compact. f is called separated, if ∆f is a closed
immersion.
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Remark 1.3.42. The motivation of separated morphism is that
in the category of topological spaces, a space X is Hausdorff if and
only if the diagonal ∆ : X → X ×X is a closed immersion.

Proposition 1.3.43. Let X be a separated scheme over the ring
Z, then the intersection U1∩U2 of two affine opens U1, U2 is again
affine.

Proof. We first note that U1∩U2
∼= U1×X U2, by showing U1∩U2

satisfies the universal property of fibre product. Then we use the
magic diagram on the left:

X1 ×Y X2 X1 ×Z X2 U1 ×X U2 U1 ×Z U2

Y Y ×Z Y X X ×Z X∆ ∆

By substituing the notations, we get the right Cartesian diagram.
Since the diagonal morphism is closed immersion, the arrow above
is by base change also a closed immersion, in particular affine. But
U1 ×Z U2 is affine, so U1 ∩ U2 is affine.

Just like separatedness for Hausdorffness, we have an analogue
of compact Hausdorfness in algebraic geometry, called properness.

Definition 1.3.44. A morphism f : Y → X is called a proper
morphism if it is separated, of finite type and universally closed
(i.e. the map on the underlying topological spaces is closed, and
stable under base change).

Separatedness and universal closedness are in general hard to
check. Luckily we have a nice criterion for them.

Theorem 1.3.45 (Valuative Criterion). Let f : Y → X be a
morphism of schemes, V a valuation ring with fraction field K,
and given an (not necessarily cartesian) square diagram on the left

SpecK Y SpecK Y

SpecV X SpecV X

1. Assume f is quasi-separated. Then f is separated if and only
if there exists at most one lift SpecV → Y for each V and
square.
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2. Assume f is quasi-compact. Then f is universally closed if
and only if there exists at least one lift SpecV → Y for each
V and square.

3. Assume f is quasi-separated and of finite type. Then f is
proper if and only if there exists a unique lift SpecV → Y
for each V and square.

Proof. [3] Tag 01KA, Tag 01KY.

Remark 1.3.46. The intuition of valuative criterion is that we
consider the spectrum of a discrete valuation ring SpecV , which
has two points, endowed with Sierpinski topology. The non-separatedness
of the affine line with doubled origin reflects as that the two lines
has one shared generic point, but the two origins are not separ-
able in the ”Hausdorff sense”. We can then map the open point
in SpecV to the generic point, and the closed point to any of the
origins. Then we may conclude with the valuative criterion that
the affine line with doubled origin is not separated.
For an arbitrary quasi-separated scheme, roughly (i.e. not rigor-
ously) speaking, the valuative criterion helps us check whether the
scheme contains an affine line with doubled origin as a subscheme,
and hence whether it is separated or not.

Definition 1.3.47. Let k be a field. A variety X over k is a
scheme over k that is integral, separated and of finite type.

We finally state the cancellation theorem, which can almost
always be applied when the structure morphism is separated.

Theorem 1.3.48 (Cancellation Theorem). Let X,Y be schemes
over S and f : X → Y a morphism over S.

X Y

S

f

φYφX

Suppose that φX has property P satisfying COMP and BC, and
the diagonal morphism ∆Y/S corresponding to φY has property P ,
then f has property P .
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Proof. Again we use the magic diagram and substituting the ele-
ments properly we get the graph diagram on the right:

X1 ×Y X2 X1 ×Z X2 X ×Y Y ∼= X X ×Z Y

Y Y ×Z Y Y Y ×Z Y∆

Γ

∆

f f×Id

So the graph morphism Γ has property P . Again by the fibre
product diagram

X ×S Y X

Y S

φXpY

the projection pY has property P . Therefore f = pY ◦ Γ has
property P .

1.4 Construction of Proj and Projective Spaces

In this section we discuss a very important construction, namely
the homogeneous spectrum Proj of a graded ring. The motiv-
ation is that for an algebraically closed field k, the points [a0 :
· · · : an] are in one-to-one correspondence to ideals of the form
(aiXj − ajXi)i,j in k[X0, . . . , Xn], which are maximal among all
homogeneous ideals. So it is natural to consider the set of all ho-
mogeneous prime ideals in a graded ring, which can be seen as the
generalization of the projective space. Like Spec we first define
ProjS as a set, then we give it the Zariski topology, and finally
make it a scheme with a structure sheaf.

Remark 1.4.1. Without further notation, a graded ring S =󰁏
n≥0 Sn is always N-graded and generated by S1 as an S0-algebra.

We write then S+ :=
󰁏

n≥1 Sn for the irrelevant ideal. There are
more general definitions for graded rings not generated in degree
one, but in algebraic geometry we concern ourselves almost only
with the case for a polynomial ring over a field or its quotient ring,
and the constructions will also be nicer and more clean.

Definition 1.4.2. Let S be a graded ring. We define the ho-
mogeneous spectrum ProjS to be the set of all homogeneous
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prime ideals except those containing the irrelevant ideal:

ProjS := {p ⊂ S|p homogeneous prime, p ⊉ S+}

If I ⊆ S is a homogeneous ideal, we define the homogeneous
vanishing locus V+(I) in ProjS to be

V+(I) := {p ∈ ProjS|I ⊆ p}

Proposition 1.4.3. Just like the affine case, we have

󰁟

i

V+(Ii) = V+

󰀣
󰁛

i

Ii

󰀤
.

V+(I1) ∪ V+(I2) = V+ (I1 ∩ I2) .

Definition 1.4.4. The homogeneous vanishing loci of homogen-
eous ideals as closed sets define a topology on ProjS. We call it
Zariski Topology.

Remark 1.4.5. ProjS can be naturally thought as a subset of
SpecS. One can also identify V+(I) = V (I)∩ProjS. Thus ProjS
has actually the subspace topology.

Unfortunately the Proj does not have a functoriality like Spec .
Indeed, if f : S → T is a homogeneous ring homomorphism, then
the preimage f−1(p) for p ∈ ProjT may still contain the irrelevant
ideal S+. However, we see that this bad case does not happen if f
is surjective, thus f gives a closed embedding ProjS/I ↩→ ProjS.

Definition 1.4.6. Let f ∈ S be a homogeneous element.We call
D+(f) := ProjS\V+(f) a homogeneous principal open.

Lemma 1.4.7. The set of all homogeneous principal opens in
ProjS forms a basis of Zarisiki Topology and is stable under in-
tersections. In particular, D+(f) ∩D+(g) = D+(fg)

Proposition 1.4.8. The homogeneous principal open D+(f) in
ProjS is homeomorphic to |SpecS(f)|, where S(f) means the ho-
mogeneous localization at f . The closed locus V+(I) is homeo-
morphic to ProjA/I.
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Theorem 1.4.9 (Homogeneous Nullstellensatz). Let S be a graded
ring. Then there is a bijection between closed subsets of ProjS
and homogeneous radical ideals in S+, by sending V ⊆ SpecA to
I+(V ) :=

󰁗
p∈V p, and I ⊆ A to V+(I).

Proof. It follows directly from the general Nullstellensatz 1.2.1

Remark 1.4.10. Note that we need an extra condition I ⊂ S+. A
counterexample is ProjZ[X]. The ideals (2) and (2X) cut out the
same locus since V+(2X) = V+(2) ∪ V+(X) = V+(2) ∪ ∅ = V+(2),
and they are both radical.

Proposition 1.4.11. Let S be a graded ring, p be a homogeneous
prime ideal. Then the closed subset V+(p) is irreducible.

Remark 1.4.12. Note that unlike the affine case the converse
does not hold. The irreducibility of V ⊂ ProjS does not imply
that I+(V ) is prime. Just consider ProjZ[X,Y ]. V+(2X) is just a
singleton but I+(V+(2X)) = (2X) is not prime.

Lemma 1.4.13. If S is a Noetherian graded ring, then ProjS is
a Noetherian topological space.

Now we start to give the homogeneous spectrum a scheme
structure. For this we need one small lemma.

Lemma 1.4.14. Let S be a graded ring, f, g ∈ S homogeneous.
Then the three localizations (S(f))[(g

deg f/fdeg g)−1], (S(g))[(g
deg f/fdeg g)−1]

and S(fg) are canonically isomorphic. In particular, there underly-
ing topological spaces of spectra are all homeomorphic to D+(fg) ⊆
ProjS.

Remark 1.4.15. If f, g are homogeneous in degree 1, we will have
a nice form S(f)[(g/f)

−1] and S(g)[(f/g)
−1].

Definition 1.4.16. Let S be a graded ring. We endow every
homogeneous principal open D+(f) ∼= |SpecS(f)| with the struc-
ture sheaf OSpecS(f)

. This definition agrees on overlaps, by 1.4.14.
Thus (ProjS,OProjS) becomes a scheme.

Remark 1.4.17. Since now we write ProjS for the scheme in the
definition, and |ProjS| for the underlying topological space.
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The construction Proj is not completely functorial, because
even if we have a graded ring homomorphism A → B and a ho-
mogeneous prime ideal p in B not contained in B+, its preim-
age can still contain A+. We give however some special cases
where a graded ring homomorphism indeed extends to a morph-
ism between two Proj .

Lemma 1.4.18. Let f : A → B be a surjective graded ring ho-
momorphism. Then it induces a closed immersion of schemes
Proj f : ProjB → ProjA.

Lemma 1.4.19. Let f : A → B0, g : A → A′ be two ring homo-
morphisms. Then the canonical map Id⊗1 : B → B⊗AA′ induces
a morphism of schemes Proj Id⊗ 1 : ProjB ⊗A A′ → ProjB.

Remark 1.4.20. In the two situations above, we have actually
f∗OY (n) ∼= OX(n). We will come back to the definition of O(n)
later in Chapter 2.

Definition 1.4.21. The projective n-space over a ring A Pn
A is

defined as ProjA[X0, . . . , Xn], where all elements in A have degree
0, and all Xi’s have degree 1.

Remark 1.4.22. Note that by construction one has a natural
structure morphism Pn

A → SpecA.

Proposition 1.4.23. Let A be a ring. We have Γ(Pn
A,OPn

A
(d)) =

A[X0, . . . , Xn]d, i.e. the degree d part of the polynomial ring.

In the world of projective spaces we lose a lot of good properties
in affine cases, but at this cost we gain that the projective n-space
is proper over A.

Proposition 1.4.24. Let A be a ring, then the natural structure
morphism Pn

A → SpecA is proper.

Proof. The proof needs the theory of invertible sheaves, which
is discussed in Chapter 2. First note that Pn

A is of finite type
and quasi-separated over A. Take a (not necessarily Cartesian)
diagram:

SpecK Pn
A

SpecV SpecA

f

g
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where V is a valuation ring and K its fraction field. f corresponds
to a line bundle on SpecK and n + 1 global sections. But a line
bundle on SpecK is always isomorphic to K itself. Therefore we
see f corresponds to n+1 elements a0, . . . , an in K. Take ai with
the smallest valuation, then a0/ai, . . . , an/ai defines the same map
f since K is isomorphic to itself as K-vector space by multiplying
with ai. Now aj/ai are in V for all j. So they define a map g to
Pn. By construction, the diagram above commutes. This shows
the existence part.
Now assume that two tuples a0, . . . , an, b0, . . . , bn in V define g1, g2
to Pn, but coincide on SpecK. This implies there exists λ ∈ K∗

such that aj = λbj . But either λ or λ−1 is in V , so by multiplying
with either λ or λ−1 we make the two tuples isomorphic. Hence
g1 = g2.

Lemma 1.4.25. dimPn
A = dimA + n. In particular, if k is a

field, then dimPn
k = n.

Definition 1.4.26. We call a scheme X projective over a ring
A, if the structure morphism f : X → SpecA factors through a
closed immersion to a projective n-space over A.

X Pn
A

SpecA

ι

f

The study of projective varieties is of great importance in
algebraic geometry. We will discuss more details in the later
chapters with more powerful tools such as ample line bundles and
cohomology.



Chapter 2

Modules on Schemes

Since we use schemes to extend the notion of a ring, a natural
idea is to study the modules on schemes, which we will spend one
whole chapter to discuss.

2.1 Sheaves of Modules and Quasi-coherent
Sheaves

Definition 2.1.1. Let X be a scheme. A sheaf of OX-modules
is a sheaf of abelian groups M, together with a morphism of
sheaves (scalar multiplication) OX × M → M, such that M(U)
is a OX(U)-module via the map OX(U) × M(U) → M(U). A
morphism of OX -modules is just a morphism of sheaves respect-
ing the module structure, i.e. the following diagram commutes:

OX ×M OX ×N

M Nf

Id×f

Remark 2.1.2. Note that every M(U) has an OX(U)-module
structure, and every stalk Mx has an OX,x-module structure.

Proposition 2.1.3. Let X be a scheme. Then all OX-modules
and their morphisms form an abelian category.

Definition 2.1.4. Let M be a sheaf of OX -modules on a scheme
X. The support of M is defined as

suppF := {x ∈ X|Mx ∕= 0}.

23
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Definition 2.1.5. Let X be a scheme, M,N be sheaves of OX -
modules. We define M ⊗OX

N , called the tensor product of
M,N , to be the sheafification of the presheaf U 󰀁→ M(U)⊗OX(U)

N (U).

Lemma 2.1.6. We have for all points x ∈ X a canonical iso-
morphism:

(M⊗OX
N )x ∼= Mx ⊗OX,x

Nx

Definition 2.1.7. Let X be a scheme, M,N be sheaves of OX -
modules. We define the internal Hom sheaf from M to N to be
HomOX

(M,N )(U) := HomOU−Mod(M|U ,N|U ). This is a sheaf of
OX -modules.

Lemma 2.1.8. We have HomOX
(M,N )|U = HomOU

(M|U ,N|U ).

Proposition 2.1.9 (Tensor-Hom Adjunction). Let X be a scheme,
M,N ,L be sheaves of OX-modules. There is a canonical iso-
morphism

HomOX
(M⊗OX

N ,L) ∼= HomOX
(M,HomOX

(N ,L))

functorial in M,N ,L. In particular, the functors − ⊗ N and
Hom(N ,−) are adjoints.

Definition 2.1.10. Let X,Y be schemes, f : X → Y a morphism
of schemes, M a sheaf of OX -modules, N a sheaf of OY -module.
We endow the pushforward f∗M with the inheriting OY -module
structure and consider it as a sheaf of OY -module. We define the
pullback f∗M to be the sheaf of OX -modules OX ⊗f−1OX

M.

Lemma 2.1.11. Let X,Y be schemes, f : X → Y a morphism of
schemes, then f∗OY = OX .

Proposition 2.1.12 (Pullback-Pushforward Adjunction). Let X,Y
be schemes, f : X → Y a morphism of schemes, M a sheaf of OX-
modules, N a sheaf of OY -modules. Then there is an isomorphism

HomOX−Mod(f
∗N ,M) ∼= HomOY −Mod(N , f∗M)

functorial in M,N .
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Proof. By 1.1.13 we have an adjunction of sheaves

Homf−1OY −Mod(f
−1N ,M) ∼= HomOY −Mod(N , f∗M)

and we have always the bijection

Homf−1OY −Mod(f
−1N ,M) ∼= HomOX−Mod(f

−1N ⊗OX ,M)

The result follows.

Definition 2.1.13. LetX be a scheme,M a sheaf ofOX -modules.
We call M is
1. free, if there is an isomorphism M ∼= O⊕I

X for some index set
I.
2. locally free, if there is an open cover X =

󰁖
i Ui, such that

M|Ui is free on Ui for all i. We also say that M is a vector
bundle if it is locally free of finite rank.
3. locally projective, if for each affine SpecA ⊆ X, M(SpecA)
is a projective A-module.
4. globally generated, if there is a surjection O⊕I

X → M.
5. of finite type, if there exists an open cover X =

󰁖
i Ui

such that for each i there exists an integer ni, and a surjection
O⊕ni

Ui
→ M|Ui .

6. of finite presentation, if there exists an open coverX =
󰁖

i Ui

such that for each i there exists two integers mi, ni, and an exact
sequence:

O⊕mi
Ui

→ O⊕ni
Ui

→ M|Ui → 0

i.e. the kernel of the generating morphism in 4. is again of finite
type.

Remark 2.1.14. Note that a morphism f : OY → OX locally of
finite type does not imply f∗OY is an OX -module of finite type.
Indeed, one definition means locally finitely generated as an al-
gebra and the other means locally finitely generated as a module.
Meanwhile, f is finite is equivalent to f∗OY is an OX -module of
finite type.

Lemma 2.1.15. All the properties in the definition above are pre-
served under pullback.

Lemma 2.1.16. Local projectiveness is an affine-local property.
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Proof. [3] Tag 05JQ.

Definition 2.1.17. Let X be a scheme M a vector bundle on
X. Let s ∈ Γ(X,M) be a global section. We define the van-
ishing locus V (s) in the following way: Pick an affine cover
X =

󰁖
i SpecAi. Then s|SpecAi can be viewed as an element of

󰁪A⊕n
i . Find a representative (f1, . . . , fn) of s, where fj ∈ Ai. Define

V (s) on SpecAi to be V (f1, . . . , fn). This definition glues well on
overlaps. Furthermore we define D(s) := X\V (s).

Now a natural question: For an affine scheme SpecA, how are
the OSpecA-modules and A-modules related?

Proposition 2.1.18. Let A be a ring, M be an A-module. We
associate every principal open D(f) ∈ SpecA with the A[f−1]-

module M [f−1], and define the restriction map res
D(f)
D(g) to be the

canonical localization M [f−1] → M [g−1]. These data define a
sheaf on the principal opens of SpecA, and by 1.1.4 extend to a
sheaf of abelian groups on SpecA, and it has a natural Ox-module
structure. We call it the sheaf of OSpecA-modules asscoiated

to M , denoted 󰁩M .

Definition 2.1.19. Let X be a scheme, a quasi-coherent sheaf
on X is a sheaf of OX -modules M such that for every affine open
SpecA ∈ X, M|SpecA ∼= 󰁩M for some A-module M . If X is fur-
thermore Noetherian and each M is a finite A-module, M is called
a coherent sheaf.

Lemma 2.1.20. The property of a sheaf of OX-modules being
quasi-coherent is affine-local. In particular, M over SpecA is

quasi-coherent if and only if M ∼= 󰁩Γ(SpecA,M).

Lemma 2.1.21. Let A be a ring, M be an A-module. Then there
is a canonical isomorphism (󰁩M)p ∼= Mp, where (󰁩M)p is the stalk

of 󰁩M at p ∈ SpecA.

Lemma 2.1.22. Let A be a ring, M,N be A-modules, f : M → N
a module homomorphism. Then f induces a morphism of OSpecA-

modules 󰁩M → 󰁨N .

Proposition 2.1.23. Let A be a ring, M an A-module, N a sheaf
of OSpecA-modules. There is actually an adjunction

HomOX−Mod(󰁩M,N ) ∼= HomA−Mod(M,Γ(SpecA,N ))
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Corollary 2.1.24. Let A be a ring. Then the functor sending
an A-module M to the sheaf of OSpecA-modules 󰁩M is an equival-
ence between the category of A-modules and the category of quasi-
coherent sheaves on SpecA.

Lemma 2.1.25. Let X be a scheme, M,N be two quasi-coherent
sheaves. Then on each affine SpecA ⊆ X where M|SpecA =
󰁩M,N|SpecA = 󰁨N we have HomOX

(M,N )(U) ∼= HomA−Mod(M,N).

Remark 2.1.26. Despite the lemma, Hom(M,N ) need not to be
quasi-coherent even if M,N are quasi-coherent.

Lemma 2.1.27. Let X be a scheme, M,N be two quasi-coherent
sheaves. Then on each affine SpecA ⊆ X where M|SpecA =

󰁩M,N|SpecA = 󰁨N we have (M ⊗OX
N )|SpecA ∼= 󰁩M⊗A N . In

particular, if f : Y → X is a morphism of schemes, M a quasi-
coherent sheaf on X and SpecB ⊆ Y maps into SpecA ⊆ X, and

denote M|SpecA = 󰁩M . then f∗M|SpecB ∼= 󰁩M ⊗B A.

Proposition 2.1.28. Let X be a scheme. The category of quasi-
coherent sheaves on X is an abelian category.

Definition 2.1.29. Let X be a scheme. A sheaf of ideals I on
X is a quasi-coherent subsheaf of OX . The closed subscheme
associated to I is the closed subscheme with the underlying to-
pological space supp(OX/I), and the structure sheaf f−1(OX/I),
where f : supp(OX/I) ↩→ X is the inclusion of topological spaces.

Proposition 2.1.30. Let X be a scheme, SpecA ⊆ X be an
affine open, I a sheaf of ideals on X and Y the associated closed
subscheme. Let I be an ideal in A such that I|SpecA = 󰁨I. Then
we get a Cartesian diagram

Spec (A/I) Y

SpecA X

where the horizontal arrows are open immersions and the vertical
arrows are closed immersions. In particular, closed immersions
are affine morphisms.
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Proposition 2.1.31. Let X be a scheme. There is a one-to-one
correspondence between closed subschemes of X and ideal sheaves
on X, by sending an ideal sheaf to its associated closed subscheme,
and sending a closed subscheme Y ↩→ X to ker(OX → f∗OY ).

2.2 Qcoh Sheaves for Projective Schemes

As for each A-module we can associate a quasi-coherent sheaf on
SpecA, we may extend this notion to graded modules on graded
rings and their projective spectra.

Remark 2.2.1. For simplicity, we assume in this section that a
graded ring is N-graded and generated by degree 1. A graded
module will however always be Z-graded.

Lemma 2.2.2. Let S =
󰁏

n≥0 Sn be a graded ring, M =
󰁏

n∈ZMn

be a graded module over S. Then for f ∈ S, the homogeneous
localization M(f) := (Mf )0 is an S(f)-module. Furthermore, if
f, g ∈ S1. Then M(f)[(g/f)

−1], M(g)[(f/g)
−1] and M(fg) are

canonically isomorphic as S(fg)-modules under the identification
S(f)[(g/f)

−1] ∼= S(g)[(f/g)
−1] ∼= S(fg).

Definition 2.2.3. Let S be a graded ring, M a graded S-module.
We define the quasi-coherent sheaf 󰁩M associated to M on
ProjS to be the sheaf 󰁨M(f) on each homogeneous principal open
D+(f). By 2.2.2 this definition coincides on intersections of prin-
cipal opens.

Lemma 2.2.4. Let S be a graded ring, M be a graded S-module.
Then there is a canonical isomorphism (󰁩M)p ∼= M(p), where (󰁩M)p

is the stalk of 󰁩M at p ∈ ProjS, and M(p) := (Mp)0 is the homo-
geneous localization of M at p.

Lemma 2.2.5. Let S be a graded ring, M,N be graded S-modules,
f : M → N a graded module homomorphism. Then f induces a
morphism of OProjS-modules 󰁩M → 󰁨N .

Definition 2.2.6. Let S be a graded ring, n an integer. We define
the twisting sheaf O(n) on ProjS to be the quasi coherent sheaf
󰁨S(n), where S(n) is the graded S-module with grading S(n)m =
Sn+m. If M is any sheaf of OProjS-modules, we write M(n) for
M⊗O(n).
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Lemma 2.2.7. The twisting sheaf O(n) is locally free of rank 1.

We will study more about locally free sheaves of rank 1 in the
next section.

Lemma 2.2.8. For a graded S-module M , we have 󰁩M(n) ∼=
󰁩M(n). In particular, O(n)⊗O(m) ∼= O(n+m).

Lemma 2.2.9. Let S be a graded ring, M,N be graded S-modules.
Assume there exists an integer n0 such that the graded submodules󰁏

n≥n0
Mn,

󰁏
n≥n0

Nn are isomorphic, then the associated sheaves

󰁩M, 󰁨N on ProjS are isomorphic.

Proposition 2.2.10. Let S be a graded ring, I a homogeneous
ideal of S. Then the closed subscheme corresponding to 󰁨I in ProjS
is canonically isomorphic to ProjS/I.

Remark 2.2.11. In particular, if S is a finitely generated, graded
k-algebra, and generated by degree 1, then ProjS can be con-
sidered as a closed subscheme of Pn

k .

Definition 2.2.12. Let S be a graded ring, M a quasi-coherent
sheaf on ProjS. We define Γ∗M :=

󰁏
n∈Z Γ(ProjS,M(n)) to be

the graded S-module associated to M.

Remark 2.2.13. It is indeed nontrivial that Γ∗M has a graded
S-module structure.

Lemma 2.2.14. Let S be a graded ring, M a graded S-module.
Then there exists an n0 sufficiently large such that

󰁏
n≥n0

Γ(ProjS, 󰁩M(n)) ∼=󰁏
n≥n0

Mn.

Lemma 2.2.15. If S = k[X0, . . . , Xn], then Γ∗O = S.

Lemma 2.2.16. Let S be a graded ring, M a quasi-coherent sheaf
on ProjS. There is an isomorphism M ∼= 󰁨Γ∗M.

Proposition 2.2.17. Let S be a graded ring. There is an equival-
ence of categories between the category of quasi-coherent sheaves
on ProjS, and the category of graded S-modules modulo the equi-
valence relation: M ∼ N if and only if

󰁏
n≥n0

Mn
∼=

󰁏
n≥n0

Nn

for some n0. The equivalence goes by sending M to Γ∗M and M
to 󰁩M .

Proposition 2.2.18. We can find for each closed subscheme Z
in Pn

k a homogeneous ideal I in k[X0, . . . , Xn] such that 󰁨I cuts out
Z.
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2.3 Invertible Sheaves

The simplest class in all quasi-coherent sheaves might be the in-
vertible sheaves. The theory of divisors (including theory of curves
and surfaces and the intersection theory) has also strong relations
with the invertible sheaves. So it is worth spending a whole section
talking about invertible sheaves.

Definition 2.3.1. A quasi-coherent sheaf L on a scheme X is
called an invertible sheaf, or a line bundle, if there exists a
quasi-coherent sheaf, denoted L−1, such that L⊗ L−1 ∼= OX .

Proposition 2.3.2. All invertible sheaves on a scheme X, modulo
isomorphisms, has a structure of abelian groups, where the addi-
tion is tensor product. We call the group the Picard group of X,
denoted PicX

Lemma 2.3.3. Let X,Y be schemes, f : X → Y a morphism, L
an invertible sheaf on Y . Then f∗L is an invertible sheaf on X.

Theorem 2.3.4. Let L be a quasi-coherent sheaf on a scheme X.
Then the following are equivalent:
1. L is invertible.
2. L is locally free of rank 1.
3. L⊗ Hom(L,OX) ∼= OX .

Theorem 2.3.5. Let X be a scheme over a ring A. Then there
is a one-to-one correspondence between morphisms from X to Pn

A

and the tuples (L, s0, . . . , sn) modulo isomorphisms, where L is a
line bundle, and s0, . . . , sn are global sections that generate L.

Proof. [1] Theorem II.7.1.

Remark 2.3.6. It is worth noting that the pullback of O(1) in
the projective space along the morphism defined by L is just L
itself, and the global sections xi are sent to si.

Remark 2.3.7. To get a geometric image, consider the case A = k
is a field and x a closed point in X with residue field k. The si can
be evaluated at x and has the value si(x) in k. Since si generate
L they cannot be identically 0 at one point. Then we just map x
to [s0(x) : · · · : sn(x)].
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Theorem 2.3.8. Let k be a field. Then PicPn
k
∼= Z, by sending n

to O(n).

Proof. [2] Example 11.43.

Theorem 2.3.9. Let X be a quasi-compact and quasi-separated
scheme, M a quasi-coherent sheaf on X. Let L be a line bundle,
s ∈ Γ(X,L) a global section. Then
1. Let f ∈ Γ(X,M) be a global section with f |D(s) = 0. Then
there exists an integer n such that f ⊗ sn = 0, where f ⊗ sn is
considered as a global section of M⊗ Ln.
2. For each section f ∈ Γ(D(s),M) there exists an integer n and
a section fX ∈ Γ(X,M⊗ Ln) such that fX |D(s) = f ⊗ sn.

Proof. 1. Let X =
󰁖n

i=1 Ui be an affine open cover. Then on
each Ui ∩D(s), s corresponds to an element si in OX(Ui) := Ai,
and Ui ∩D(s) ∼= SpecAi,si . Therefore f |Ui∩D(s) = 0 implies that
sni ·f(Ui) = 0. The n here is dependent of i but by choosing n large
enough we can assume sni · f(Ui) = 0 for all i. Now sni s

n
i · f(Ui)

is precisely the restriction of f ⊗ sn on Ui. The assertion then
follows.
2. We succeeding the notations above. Clearly D(s) =

󰁖n
i=1 Ui ∩

D(s) is an affine open cover. As Ui ∩D(s) is the same as D(si) in
Ui, f |Ui∩D(s) has actually the form fi/s

n
i for some fi ∈ Γ(Ui,M⊗

Ln) ∼= Γ(Ui,M). Hence fi|Ui∩D(s) = f ⊗ sn|Ui∩D(s). Moreover,
by unifying the n for all i (and also adjusting fi by multiplying
with some power of si), (fi|Ui∩Uj − fj |Ui∩Uj )|D(s)∩Ui∩Uj

is zero.
Since Ui∩Uj is quasi-compact and quasi-separated, we may use 1.
and conclude that there exists an integer m such that (fi|Ui∩Uj −
fj |Ui∩Uj ) ⊗ (s|Ui∩Uj )

m = 0. Hence fi ⊗ sm glue together to be a
global section in Γ(X,M⊗Ln+m), which gives f ⊗ sn+m after the
restriction.

Corollary 2.3.10. Let A be a graded ring finitely generated in
degree 1, M a quasi-coherent sheaf of finite type on ProjA. Then
there exists an integer n0 such that for all n ≥ n0 the sheaf M(n)
is finitely globally generated.

We always hope that a proper scheme over A can be embedded
as a closed immersion into some projective space: ι : X ↩→ Pn

A.
Recall that to give a morphism into Pn

A is the same as to give a line
bundle L and n + 1 global sections. In order to characterize the
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line bundles which indeed give a closed immersion, we observe two
properties of the line bundle ι∗O(1) which do not hold in general
if ι is not a closed immersion:
1. For each s ∈ Γ(X, ι∗O(1)), D(s) is affine.
2. For a quasi-coherent, of finite type sheaf M on X, M(n) is
globally generated for n ≫ 0.(See 2.3.10)
These two properties motivates the following definitions of ample
line bundles. We will see that the two properties indeed almost
characterized the bundles we want.

Definition 2.3.11. Let X be a scheme over a ring A, L an invert-
ible sheaf on X. We call L a very ample line bundle relative
to A if there exists a closed immersion ι : X ↩→ Pn

A such that
L ∼= ι∗O(1).

Definition 2.3.12. Let X be a quasi-compact scheme. We call an
invertible sheaf L on X an ample line bundle if for each x ∈ X
there exists a s ∈ Γ(X,L⊗n) for some n > 0 such that x ∈ D(s)
and D(s) is affine.

Lemma 2.3.13. Let L be an ample line bundle on a scheme X.
The following are equivalent:
1. L is ample.
2. L⊗n is ample for all n > 0.
3. L⊗n is ample for some n > 0.

Lemma 2.3.14. Let X be an affine scheme. Then every invertible
sheaf is ample. Indeed, if s is a global section of the line bundle
L⊗n, then D(s) is affine.

Lemma 2.3.15. Let f : X → Y be a locally closed immersion of
schemes, L an ample line bundle on Y . Then f∗L is ample on X.

Proposition 2.3.16. Let X be a quasi-compact scheme with an
ample line bundle. Then X is separated.

Theorem 2.3.17 (criterion of ampleness). Let X be a quasi-
compact scheme, L a line bundle. Then the following are equi-
valent:
1. L is ample.
2. The open subsets D(f) that are affine form a basis of topology,
when f goes over all elements in Γ(X,L⊗n) for all n ≥ 0.
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3. The open subsets D(f) form a basis of topology, when f goes
over all elements in Γ(X,L⊗n) for all n ≥ 0.
4. For all quasi-coherent, of finite type sheaf M on X, there exists
an integer n0, such that for all n ≥ n0, the quasi-coherent sheaf
M⊗ Ln is globally generated.

The next theorem due to Serre needs the theory of sheaf co-
homology, but we still state it here for an easier looking up.

Theorem 2.3.18 (Serre’s cohomological criterion of ampleness).
Let X be a proper scheme over a Noetherian ring A, L a line
bundle. Then the following are equivalent:
1. L is ample.
2. For all quasi-coherent sheaves M of finite type on X, there
exists an integer n0, such that for all n ≥ n0 and all i > 0,
H i(X,M⊗ L⊗n) = 0.

Theorem 2.3.19. Let X be a proper scheme over a ring A, L a
line bundle. Then the following are equivalent:
1.L is ample.
2.Ln is very ample relative to A for some n.
3.There exists an integer n0 such that for all n ≥ n0, Ln is very
ample relative to A.

2.4 Relative Spec and Proj

In this section we give the definition of relative Spec and relative
Proj, and prove some funtorial properties. Recall that SpecA
represents the functor X 󰀁→ Hom(A,Γ(X,OX)) (1.2.26).

Theorem 2.4.1 (relative Spec). Let S be a scheme, A a quasi-
coherent OS-algebra. Then there exists a scheme, denoted Spec

S
(A),

called relative Spec of A on S, such that there is a bijection,
functorial in X, when given a scheme morphism f : X → S.

HomS−Sch(X, Spec
S
(A)) ∼= HomOS−Alg(A, f∗OX)

Remark 2.4.2. By Yoneda’s lemma, the relative Spec of a certain
OS-algebra is unique up to unique isomorphism.

To construct the right scheme we need one lemma.
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Lemma 2.4.3. Let X be a scheme, A a quasi-coherent OX-algebra,
U ′ ⊆ U ⊆ X two affine opens. We have a canonical map SpecA(U ′) →
SpecA(U) induced by the restriction map, and canonical maps
SpecA(U ′) → U ′, SpecA(U) → U since A is an OX-algebra.
Then the following diagram is Cartesian:

SpecA(U ′) SpecA(U)

U ′ U

Proof of Theorem 2.4.1. We construct Spec
S
(A) as follows. For

each affine open U ⊆ S the preimage U ×S Spec
S
(A) is just

SpecA(U). By the previous lemma this construction glues well
on overlaps.
Now let f : X → S be a morphism of schemes. Given a morphism
of OS-algebras A → f∗OX , we get in particular homomorphism
of rings f∗OX(U) = OX(f−1(U)) → A(U), which induces morph-
ism of schemes f−1(U) → SpecA(U). Let U goes over all affine
opens of S, and glue these morphisms together using the property
of sheaf morphisms we get a morphism X → Spec

S
(A). We omit

the verification that the following diagram commutes.
Conversely given a morphism of schemes g : X → Spec

S
(A) such

that the following diagram commutes,

X Spec
S
(A)

S

f π

g

we note that this gives a morphism of (not necessarily quasi-
coherent)OSpec

S
(A)-algebrasOSpec

S
(A) → g∗OX , which gives after

pushforward a morphism of (not necessarily quasi-coherent) OS-
algebras π∗OSpec

S
(A) → π∗g∗OX . Now π∗OSpec

S
(A)

∼= A, π∗g∗OX
∼=

f∗OX . The result follows.
We omit the verification that these two constructions are mutually
inverse.

Remark 2.4.4. By the construction, the structure morphism π :
Spec

S
(A) → S is affine. Explicitly, for each open affine U ⊆ S, the

preimage π−1(U) is SpecA(U). In particular, π∗OSpec
S
(A) = A.
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Lemma 2.4.5. Let S be a scheme, A,B two quasi-coherent OS-
algebras, and ϕ : A → B a morphism of OS-algebras. Then ϕ
induces a morphism of schemes Spec

S
(B) → Spec

S
(A) over S.

Thus the relative Spec extends to a functor from the category of
OS-algebras to the category of schemes over S.

Proposition 2.4.6. The relative Spec behaves well with pullbacks.
Let X,Y be schemes, f : X → Y a morphism. A a quasi-coherent
OY -algebra. Then the following diagram, induced by the canonical
morphism A → f∗f

∗A, is Cartesian.

SpecOX
(f∗A) SpecOY

(A)

X Y
f

We also construct the relative Proj via glueing. For simplicity
all graded quasi-coherent OS-algebra is generated in degree 1.

Lemma 2.4.7. Let S be a scheme, A a graded quasi-coherent
OS-algebra. Let U ′ ⊆ U ⊆ S be two affine opens. Then the homo-
morphism of graded rings A(U) → A(U ′) induces a morphism of
schemes Proj (A(U ′)) → Proj (A(U)), and the following diagram
is Cartesian.

Proj (A(U ′)) Proj (A(U))

U ′ U

Theorem 2.4.8. Let S be a scheme, A a graded quasi-coherent
OS-algebra. Then there exists a scheme, denoted ProjOS

(A), called

the relative Proj of A on S, together with a morphism π :
ProjOS

(A) → S such that for each affine open U ⊆ S, π−1(U) ∼=
ProjA(U).

Proof. Just simply glue ProjA(U) together. By the previous
lemma they glue well.

Remark 2.4.9. The relative Proj is actually also functorial like
the relative Spec in some sense, but the precise formulation is too
complicated. For more details see also [3] Tag 07ZF.
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Lemma 2.4.10. Let S be a scheme, A a graded quasi-coherent
OS-algebra. For each affine open U ⊆ S, we have the tautolo-
gical bundle Oπ−1(U)(1) on ProjA(U). These bundles on each U
agree on overlaps and therefore glue together. We denote the glued
bundle with OProjOS

(A)(1).

Proposition 2.4.11. The relative Proj behaves well with pull-
backs. Let X,Y be schemes, f : X → Y a morphism. A a
graded quasi-coherent OY -algebra. Then we have a morphism
ProjOX

(f∗A) → ProjOY
(A), and the following diagram com-

mutes and is Cartesian.

ProjOX
(f∗A) ProjOY

(A)

X Y
f

Proposition 2.4.12. Let S be a scheme, A a graded quasi-coherent
OS-algebra, and L a line bundle on S. Define the twisted algebra
A ∗ L :=

󰁏
d≥0Ad ⊗ Ld with the obvious addition and multiplic-

ation. We have then an isomorphism of schemes φ : X ∗ L :=
ProjOS

(A ∗ L) ∼= X := ProjOS
(A) such that the following dia-

gram commutes:

X ∗ L X

S

φ

ππ′

Moreover, we have OX∗L(d) ∼= φ∗OX(d)⊗ π′∗Ln.

Sketch of proof. It follows from the fact that locally onD+(g) ⊂ X
a section f/gn of the structure sheaf can be mapped to f⊗sn/gn⊗
sn and vice versa. For twisting sheaf OX∗L(1) a section f/gn

should however be mapped to f ⊗ sn+1/gn ⊗ sn. Thus we have to
twist π′∗Ln for the right transition function.

Definition 2.4.13. Let S be a scheme. We define the relat-
ive projective n-space over S to be Pn

S := Pn
Z ×SpecZ S ∼=

ProjOS
(SymOn+1

S ).
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Moreover we are interested in schemes over S that look locally
like a relative projective n-space over S, which motivates us to the
following definition.

Definition 2.4.14. Let S be a scheme, E be a quasi-coherent OS-
module. We call P(E) := ProjOS

(SymE) the projective bundle

of E over S. If E is locally free of rank n + 1, we also call P(E) a
Pn-bundle.

Lemma 2.4.15. Let S be a scheme, E a vector bundle on S of rank
n + 1. Then the Pn-bundle P(E) deserves its name, i.e. for each
open U ⊆ X where E is trivial, π−1(U) ∼= Pn

U , where π : P(E) → S
is the structure morphism.

Proposition 2.4.16. Let S be a scheme, E be a quasi-coherent
OS-module, and L a line bundle on S. There is an isomorphism
φ : P(E ⊗ L) ∼= P(E) such that the following diagram commutes:

P(E ⊗ L) P(E)

S

φ

ππ′

Moreover, we have OP(E⊗L)(1) ∼= φ∗OP(E)(1)⊗ π′∗L.

Theorem 2.4.17. Let S be a scheme, E a vector bundle on S of
rank n+ 1, X a scheme over S with structure morphism f . Then
there is a one-to-one correspondence between morphisms g : X →
P(E) over S, and surjections η : f∗E ↠ L modulo isomorphisms
(see remark below), where L is a line bundle on X.

X P(E)

S
π

g

f

Remark 2.4.18. The isomorphism means a commutative dia-
gram:

f∗E

L L′

η η′

∼
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Sketch of proof. The bijection in one direction works by sending g
to f∗E ↠ g∗O(1), which is the pullback of the canonical surjection
π∗E ↠ O(1) along g.
Conversely assume we have η : f∗E ↠ L. Pick an affine open cover
S =

󰁖
i Ui such that E|Ui are trivial. Then η|f−1(Ui) degenerates to

On+1
f−1(Ui)

↠ L|f−1(Ui), which gives n+1 global sections of L|f−1(Ui)

and hence define a morphism f−1(Ui) → π−1(Ui) ∼= Pn
Ui
. By 2.3.5

the morphisms on each f−1(Ui) glue together and we obtain a
morphism X → P(E).



Chapter 3

Flatness and Smoothness

In this chapter we extend the notion of smoothness in differential
geometry to the algebraic schemes and study its properties and
criteria.

3.1 Flatness and Faithfully Flat Descent

Recall that an A-module M is flat (resp. faithfully flat) if and only
if the funtor − ⊗A M is exact (resp. faithful and exact). Again
we want to extend the notion to all OX -modules on a scheme X.
It will turn out that the flatness condition is crucial for a scheme
to be relative smooth to another scheme.

Definition 3.1.1. LetX be a scheme. AnOX -moduleM is called
flat if the functor OXMod → OXMod,N 󰀁→ N ⊗OX

M is exact.

Lemma 3.1.2. Let X be a scheme, M an OX-module. Then M
is flat if and only if the stalk Mx is a flat OX,x-module for all
x ∈ X.

Remark 3.1.3. Therefore an OX -module being flat is a stalk-
local condition. In particular, if M is a quasi-coherent sheaf of
OX -modules, then M is flat if and only if there exists an affine
cover X =

󰁖
i Ui such that M(Ui) is flat over OX(Ui), if and only

if for each affine open U ⊆ X, M(U) is flat over OX(U).

Definition 3.1.4. Let X,Y be schemes, f : X → Y a morphism.
f is said to be flat if for all x ∈ X, OX,x is flat over OY,f(x). f is
said to be faithfully flat if f is flat and surjective

39
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Remark 3.1.5. Note the definition of a flat morphism does not
imply that OX is flat as OY -module.

Remark 3.1.6. The motivation of the definition of faithful flat-
ness comes from the fact that a ring homomorphism A → B is
faithfully flat if and only if B is flat over A and SpecB → SpecA
is surjective.

Lemma 3.1.7. Let X,Y be schemes, f : X → Y a morphism. X
is flat over Y if and only if there exist affine covers X =

󰁖
i Ui, Y =󰁖

i Vi such that f(Ui) ⊆ Vi and OX(Ui) is flat over OY (Vi), if and
only if for each affine U ⊆ X mapping into affine V ⊆ X, OX(U)
is flat over OY (V ).

Theorem 3.1.8. Let X,Y be schemes of finite type over a field
k, and Y irreducible f : X → Y a flat morphism. Then for any
(even not closed) point y ∈ Y , the scheme theoretic fibre f−1(y)
has dimension dimX − dimY . Conversely if a fibre f−1(y) has
dimension n, then dimX = dimY + n.

Proof. We only give the proof whereX is irreducible. For a general
proof see [1] Corollary III.9.6. First recall the algebraic fact that
if φ : B → A is a flat local homomorphism of local rings, then
dimA = dimB + dimA/mBA. See [3] Tag 00ON for a proof.
We reduce to the case where X = SpecA, Y = SpecB are affine.
Then dim f−1(y) = dimA/pyA. Pick a maximal ideal m in A/pyA,
it corresponds to a maximal ideal in A, which by abuse of notation
we also denote with m. Then since A is catenary, dimAm/pyAm,
dimAm = dimA. Then we have dimA = dimAm = dimBpy +
dimAm/pyAm = dimB + dimA/pyA. As dimB = dimY and
dimA = dimX we are done.
The converse direction is clear.

Remark 3.1.9. This shows that when we have a flat morphism
f : X → Y and consider the fibre f−1(y), the fibre won’t change
illy when we slightly move the point y. A counter-exmaple is the
projection of the cross Spec k[x, y]/(xy) onto the x-axis Spec k[x].
The preimage of x ∕= 0 is a closed point but the preimage of 0 is
the y-axis.

We now start to talk about faithfully flat descent. The central
question is, given a scheme X over a scheme S, a faithfully flat
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morphism f : S′ → S and a property P of X×SS
′ (i.e. the scheme

after base change), does X also have P?. The answer is yes for
almost all scheme properties that we have encountered.
We can even generalize the notion and ask whether an OX -module
M descends, i.e. is there an OY -module N such that M ∼=
f∗N ? Moreover we can even descend schemes through faithful
flat morphisms. We will just list the descending properties and
formulate the descent of modules. For a detailed discussion see [2]
Chapter 14.

Theorem 3.1.10. Let X,Y be schemes, f : X → Y a faithfully
flat morphism. If X is either
1. reduced,
2. normal,
3. nonsingular,
then so is Y .

Theorem 3.1.11. Let X,Y be schemes over a scheme S and f :
X → Y a morphism over S. Let S′ be another scheme, g : S′ → S
be a base change morphism, and denote f ′ : X ′ := X ×S S′ →
Y ′ := Y ×S S′ the schemes and morphisms after base change.

X ′ Y ′

S′ X Y

S

f

f ′

g

Assume g is surjective. If f ′ is either
1. surjective,
2. injective,
3. bijective,
then so is f .

Theorem 3.1.12. Succeeding the notations above, and assume
now g is quasi-compact and faithfully flat. If f ′ is either
1. open,
2. closed,
3. a homeomorphism on the underlying topological spaces,
4. quasi-compact,
5. quasi-separated,
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6. separated,
then so is f .

Theorem 3.1.13. Succeeding the notations above. We continue
to assume g is quasi-compact and faithfully flat. If f ′ is either
1. locally of finite type,
2. of finite type,
3. locally of finite presentation,
4. of finite presentation,
5. an isomorphism,
6. a monomorphism,
7. a locally closed immersion,
8. an open immersion,
9. a closed immersion,
10. proper,
11. affine,
12. finite,
then so is f .

3.2 Formal Smoothness

We now introduce the notion of smoothness. We first give the most
general definition of smoothness which seems to be less intuitive.
Then we describe the properties that a smooth scheme possesses
(mainly the properties of relative Kähler differentials in the next
section), which shows that this definition really coincides with our
intuition of smoothness in geometry.

Definition 3.2.1. A morphism of schemes f : T → T ′ is called
a first order thickening or a square zero extension if f is a
closed immersion and the corresponding sheaf of ideals I satisfies
I2 = 0.

Remark 3.2.2. One should consider T ′ as the same scheme T
but with a little more information of the normal vectors on T . A
good example of a first order thickening that one should always
keep in mind is Spec k → Spec k[ε]/(ε2), by sending ε to 0. We
also call Spec k[ε]/(ε2) a point with normal vectors.

Lemma 3.2.3. Let f : T → T ′ be a first order thickening of
schemes. Then T and T ′ have the same underlying topological
space.
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Definition 3.2.4. A morphism of schemes f : X → S is said
to be formally smooth (resp. formally unramified, formally
étale) if given any (not necessarily Cartesian) diagram:

T X

T ′ S

there exists at least one (resp. at most one, exactly one) morphism
T ′ → X making the diagram commute.

T X

T ′ S

Remark 3.2.5. It is clear from definition that a morphism being
formally smooth (resp. formally unramified, formally étale) satis-
fies COMP and BC. But one has to use sheaf cohomology to show
that it is also LOCS and LOCT. For a proof see [3] Tag 0D0F.

Definition 3.2.6. A morphism of schemes f : X → S is said to
be smooth (resp. unramified, étale), if it is formally smooth
(resp. formally unramified, formally étale) and locally of finite
presentation (resp. locally of finite type, locally of finite present-
ation).

Remark 3.2.7. In Grothendieck’s EGA, unramified morphisms
are asked to be locally of finite presentation. However we hope all
closed immersions to be unramified (There are closed immersions
whose sheaves of ideals are not of finite type), thus we weaken the
condition for unramified morphisms.

Definition 3.2.8. Let X be a scheme over a field k, x ∈ X a point
with residue field k. We define the Zariski cotangent space
at x to be CTxX := mx/m

2
x, where mx is the unique maximal

ideal in the stalk OX,x. Note it has a k-vector space structure via
the isomorphism OX,x/mx

∼= k. We define the Zariski tangent
space to be the dual vector space TxX := (CTxX)∨.

Proposition 3.2.9. Let X be a locally noetherian scheme over
a field k, x ∈ X a point with residue field k. Let T = Spec k →
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T ′ = Spec k[ε]/(ε2) be the first order thickening. There is a one-to-
one correspondence between the elements in TxX and morphisms
T ′ → X making the following diagram commute.

T X

T ′ Spec k

• 󰀁→x

Proof. To give a morphism T ′ → X is the same as to give a local
ring homomorphism OX,x → k[ε]/(ε2). Take a basis 󰁨f1, · · · ,󰁩fn
in CTxX, which by Nakayama’s lemma lift to a generator set
f1, · · · , fn in mx. Given a local homomorphism OX,x → k[ε]/(ε2)
we know fi 󰀁→ aiε for some ai ∈ k, which defines a linear map
CTxX → k by sending 󰁨fi to ai. Conversely given a linear map
CTxX → k, sending 󰁨fi to ai we can define a local ring homo-
morphism OX,x → k[ε]/(ε2), fi 󰀁→ aiε.

3.3 Kähler Differentials

Proposition 3.2.9 gives us the intuition that smoothness has some
relations with the tangent space. Hence We want to construct
relative tangent space of a morphism X → S even when S is not
affine and study its properties. This is the motivation of Kähler
differentials. We start with an algebraic treatment of the deriva-
tion.

Definition 3.3.1. Let A,B be rings, f : A → B a ring homo-
morphism, M a B-module. An A-module homomorphism d : B →
M is called an A-linear derivation if it satisfies:
1.(Annihilation) d(f(a)) = 0 for all a ∈ A.
2.(Leibniz’s Rule) d(ab) = a · d(b) + b · d(a) for all a, b ∈ B.

Remark 3.3.2. Note that d is not B-linear. Indeed, d is B-linear
if and only if d is the zero homomorphism, since d(b) = d(1 · b) =
b · d(1) = 0.

Remark 3.3.3. A good example one should keep in mind is the
module of differentials of the polynomial ring B := k[x, y] over
k, which is defined as M = B · dx

󰁏
B · dy. The dx, dy are just

formal symbols. The derivation is given by d : B → M, f 󰀁→ df =
∂f
∂x · dx+ ∂f

∂y · dy
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Proposition 3.3.4. Let A,B be rings, f : A → B a ring ho-
momorphism. There exists a B-module Ω1

B/A, called the Kähler
differential of B relative to A, satisfying the following universal
property:
1. There exists an A-linear derivation d : B → Ω1

B/A, called the
universal derivation.
2. For a B-module M and an A-linear derivation dM , there ex-
ists a unique B-module homomorphism φ : Ω1

B/A → M such that
dM = φ ◦ d.
i.e. in the language of representable functors, there exists a natural
bijection HomB−Mod(Ω

1
B/A,M) ∼= DerA(B,M).

Proof. The construction of is completely formal. Define Ω1
B/A :=󰁏

b∈B B·db/ ∼, where db are just formal symbols, and∼ is the sub-
module generated by the relations da, d(b1+b2)−db1−db2, d(b1b2)−
b1db2 − b2db1 with a ∈ A, b1, b2 ∈ B. Define d : B → Ω1

B/A, b 󰀁→
db. Given an A-linear derivation dM : B → M , we can define
φ : Ω1

B/A → M,db 󰀁→ dM (b). We omit the verification that the
construction is well-defined and universal.

Lemma 3.3.5. Let A,B,A′ be rings. Assume we have ring ho-
momorphisms A → B, A → A′. Consider the push-out B′ :=
A′ ⊗A B. There is a natural isomorphism of B′-modules Ω1

B′/A′
∼=

B′ ⊗B Ω1
B/A

∼= A′ ⊗A Ω1
B/A.

Ω1
B′/A′ Ω1

B/A

B′ B

A′ A

Remark 3.3.6. In particular, Ω1
B[f−1]/A[f−1]

∼= Ω1
B/A[f

−1]. And

Ω1
[B/(f(I))]/[A/I]

∼= Ω1
B/A/IΩ

1
B/A.

Proposition 3.3.7. Let A,B,C be rings, f : A → B, g : B → C
two ring homomorphisms. Then there exists an exact sequence of
C-modules:

C ⊗B Ω1
B/A → Ω1

C/A → Ω1
C/B → 0
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Proof. [3] Tag 00RS.

Proposition 3.3.8. Succeeding the notations above, and assume
that g is surjective with kernel I ⊆ B. Then Ω1

C/B = 0 and there
exists an exact sequence of C-modules:

I ⊗B C ∼= I/I2 → C ⊗B Ω1
B/A → Ω1

C/A → 0

The left arrow is just the universal derivation of B relative to A
tensoring with identity on C.

Proof. [3] Tag 00RU.

Proposition 3.3.9. Let A,B be rings, f : A → B a ring homo-
morphism. Write I for the kernel of the diagonal homomorphism
∆ : B ⊗A B → B, b1 ⊗ b2 󰀁→ b1b2. Then I/I2 has a B-module
structure and identifies with the Kähler differential Ω1

B/A via the
A-linear derivation b 󰀁→ b⊗ 1− 1⊗ b.

Proof. I/I2 is indeed a B-module as B ∼= (B ⊗A B)/I. Indeed, I
is generated by b⊗ 1− 1⊗ b for b ∈ B. Given b′ ∈ B we can check
b′ · (b⊗ 1− 1⊗ b) = bb′⊗ 1− 1⊗ bb′. We omit the verification that
d : b 󰀁→ b ⊗ 1− 1⊗ b is indeed an A-linear derivation. Now given
another A-linear derivation dM : B → M , we map b⊗ 1− 1⊗ b to
dM (b).

With the identification above we can construct now the Kähler
differential for general schemes.

Definition 3.3.10. Let X,S be schemes f : X → S a separated
morphism. Let I be the ideal sheaf corresponding to the diagonal
morphism∆ : X → X×SX. We define the sheaf of differentials
of X relative to S, or the cotangent sheaf of X relative to S to
be Ω1

X/S := ∆∗I.

Remark 3.3.11. Note that Ω1
X/Y is quasi-coherent by definition.

Lemma 3.3.12. Let X,S be schemes f : X → S a separated
morphism. Take an affine open SpecA ⊆ X mapping to an affine

open SpecR ⊆ S. Then Ω1
X/S |SpecA ∼= 󰁨Ω1

A/R.

Remark 3.3.13. One can also follow the definition of differen-
tials of rings and define the differentials of schemes to be the glue
of local differentials of rings and showing that it is precisely the
pullback of the kernel of diagonal morphism.
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Lemma 3.3.14. Let X,S be schemes f : X → S a separated
morphism. Let S′ be another scheme and g : S′ → S a morphism
of schemes. Define X ′ := X ×S S′ to be the scheme after base
change. Denote the projection X ′ → X as g′. Then there is a
natural isomorphism of OX′-modules Ω1

X′/S′
∼= g′∗Ω1

X/S.

Ω1
X′/S′ Ω1

X/S

X ′ X

S′ S

g′

Proposition 3.3.15. 4.0.11 Let X,Y, S be schemes, f : X →
Y, g : Y → S be morphisms. There exists an exact sequence of
OX-modules:

f∗Ω1
Y/S → Ω1

X/S → Ω1
X/Y → 0

Proof. This is just the scheme version of 3.3.7

Proposition 3.3.16. Succeeding the notations above, and assume
that f is a closed immersion with corresponding sheaf of ideals I
on X. Then Ω1

X/Y = 0 and there exists an exact sequence of
OX-modules:

f∗I → f∗Ω1
Y/S → Ω1

X/S → 0

Proof. This is just the scheme version of 3.3.8

We now start to state the relations between smoothness and
Kähler differential.

Lemma 3.3.17. Let X be a separated scheme over a field k. Let
x ∈ X be a point with residue field k. There is an isomorphism of
k-vector spaces CTxX ∼= (Ω1

X/k)x ⊗OX,x
k.

Proposition 3.3.18. Let X,S be schemes and f : X → S a
morphism. Then f is formally unramified if and only if Ω1

X/S = 0.

Proposition 3.3.19. Let X,Y, S be schemes, f : X → Y, g : Y →
S be morphisms.
1. If f is formally smooth, then the sequence of OX-modules is
exact and splits locally:

0 → f∗Ω1
Y/S → Ω1

X/S → Ω1
X/Y → 0



48 CHAPTER 3. FLATNESS AND SMOOTHNESS

2. If g ◦ f is formally smooth, and the sequence above is exact and
splits locally, then f is formally smooth.

Corollary 3.3.20. Let X,Y, S be schemes, f : X → Y, g : Y → S
be morphisms. If f is formally étale, then f∗Ω1

Y/S
∼= Ω1

X/S.

To give the proof of 3.3.19 we need a construction of first order
thickening.

Definition 3.3.21. Let A be a ring, M an A-module. We define
the ring A[M ] to be the A-module A⊕M with the obvious mod-
ule addtion. Define the module multiplication as (a1⊕m1) · (a2⊕
m2) := a1a2⊕(a1m2+a2m1). Equivalently, A[M ] = Sym•

AM/(Sym2
AM).

Lemma 3.3.22. Let A be a ring, M an A-module. The projection
A[M ] → A is a first order thickening.

Lemma 3.3.23. Let A be a ring, M,N two A-modules, f : M →
N an A-module homomorphism. Then f induces a ring homo-
morphism A[M ] → A[N ], a⊕m 󰀁→ a⊕ f(m). Thus the construc-
tion M 󰀁→ A[M ] is a functor from A−Mod to the category of first
order thickenings over A.

Remark 3.3.24. Indeed, if we restrict the category of first order
thickenings to the split first order thickenings (i.e. there exists a
ring homomorphism A → A′ such that A → A′ → A = IdA), then
the functor is an equivalence of categories.

Proposition 3.3.25. Let R be a ring, A an R-algebra, M an
A-module. There is a bijection between the R-linear derivations
A → M and the ring homomorphisms A → A[M ] that are R-
linear and satisfy A → A[M ] → A = IdA, where the last arrow is
the usual projection.

Proof. Given an R-linear derivation d : A → M we have an R-
linear ring homomorphism f : A → A[M ], a 󰀁→ a ⊕ d(a). Con-
versely given an R-linear ring homomorphism f : A → A[M ], it
necessarily has the form IdA⊕d for some R-linear map d : A → M .
One can check d is indeed a derivation. We omit the verification
that these two constructions are mutually inverse.
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Proof of 3.3.19. Wemay reduce to the affine caseX = SpecB, Y =
SpecA,S = SpecR. Denote f 󰂒 (resp. g󰂒) to be the ring homo-
morphism A → B corresponding to f (resp. g). To prove 1. it
suffices to construct a homomorphism δ : Ω1

B/R → B⊗RΩ
1
A/R such

that δ ◦ ρ = IdB⊗RΩ1
A/R

, where ρ : b⊗ da 󰀁→ b · df 󰂒(a) is the homo-

morphism B⊗RΩ1
A/R → Ω1

B/R corresponding to the second arrow

in sequence. ρ rises to a ring homomorphism B[B ⊗R Ω1
A/R] →

B[Ω1
B/R]. We denote the ring homomorphism by abuse of notation

also with ρ. Note that ρ is a first order thickening, since the kernel
of ρ lies completely in Ω1

B/R. Consider the diagram:

B[Ω1
B/R] B

B[B ⊗R Ω1
A/R] A

ρ

a 󰀁→f󰂒(a)⊕(1⊗da)

b 󰀁→b⊕db

f󰂒

Since f 󰂒 is formally smooth we get a lift B → B[B ⊗R Ω1
A/R].

The lift is R-linear, and its compose with the projection B[B ⊗R

Ω1
A/R] → B is identity on B. Therefore we get an R-linear deriva-

tion λ : B → B⊗RΩ
1
A/R, and the dotted arrow is just b 󰀁→ b⊕λ(b).

By the universal property of Kähler differentials we obtain a B-
module homomorphism δ : Ω1

B/R → B ⊗R Ω1
A/R, db 󰀁→ λ(b). One

sees now δ ◦ ρ(b⊗ da) = δ(b · df 󰂒(a)) = b⊗ λ(df 󰂒(a)) = b⊗ da.
For the 2. part we may by restriction to smaller affines assume
that the sequence splits. Consider the following diagram:

C/I B

C A

R

f󰂒

g󰂒
v

u′

where I2 = 0. Since f 󰂒 ◦g󰂒 is formally smooth we get a lift u′ such
that u′◦f 󰂒◦g󰂒 = v◦g󰂒. But the whole diagram does not necessarily
commute. One can check v−u′◦f 󰂒 is an R-linear derivation from A
to I. If we find a lift u : B → C, then similarly u−u′ is an R-linear
derivation from B to I. Then we have v−u′◦f 󰂒 = (u−u′)◦f 󰂒. This
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shows it suffices to find an R-linear derivation δ : B → C such that
v−u′◦f 󰂒 = δ◦f 󰂒 and conclude that u := u′+δ. The question now
degenerates to: Given an R-linear derivation δA : A → I, can we
find an R-linear derivation δB : B → I such that δA = δB ◦f 󰂒? We
know that HomB−Mod(Ω

1
B/R, I) → HomB−Mod(B ⊗A Ω1

A/R, I)
∼=

HomA−Mod(Ω
1
A/R, I) is surjective since the sequence splits. But

HomB−Mod(Ω
1
B/R, I) corresponds to R-linear derivations B → I,

HomA−Mod(Ω
1
A/R, I) corresponds to R-linear derivations A → I.

And we are done.

Proposition 3.3.26. Let X,Y be schemes, f : X → Y a morph-
ism. If f is formally smooth, then Ω1

X/Y is locally projective.

Proof. The problem is local, so we may assume X = SpecB, Y =
SpecA. Denote with f 󰂒 : A → B the corresponding ring homo-
morphism. Take a surjection of B-modules M ′ → M and consider
the diagram:

B[M ] B

B[M ′] A
f⊕0

Id⊕δM

Since f is formally smooth we find a lift Id ⊕ δM ′ from B to
B[M ′]. Therefore, given a homomorphism Ω1

B/A → M of B-
modules, it corresponds to an A-linear derivation δM : B → M ,
which can be lifted to an A-linear derivation δM ′ : B → M ′,
which corresponds to a homomorphism Ω1

B/A → M ′. This implies

HomB−Mod(Ω
1
B/A,M

′) → HomB−Mod(Ω
1
B/A,M) is surjective.

Remark 3.3.27. If f is also locally of finite presentation, i.e.
smooth, then Ω1

X/Y is also of finite type. A quasi-coherent module
is locally projective and of finite type if and only if it is locally free
of finite rank, See [3] Tag 00NX. Therefore if f is smooth, then
Ω1
X/Y is locally free of finite rank.

Proposition 3.3.28. Let X,Y, S be schemes, f : X → Y a closed
immersion with sheaf of ideals I, g : Y → S a morphism.
1. If g ◦ f is formally smooth, then the sequence of OX-modules is
exact and splits locally:

0 → f∗I → f∗Ω1
Y/S → Ω1

X/S → 0
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2. If g is formally smooth, and the sequence above is exact and
splits locally, then g ◦ f is formally smooth.

Proof. We reduce to the affine case S = SpecR, Y = SpecA,X =
SpecA/I. Denote g󰂒 to be the ring homomorphism R → A corres-
ponding to g. Denote ρ : A/I⊗A I → A/I⊗AΩ1

A/R, a⊗b 󰀁→ a⊗db

to be the A/I-module homomorphism corresponding to the second
arrow in the sequence.
For the first part we need a homomorphism δ : A/I ⊗A Ω1

A/R →
A/I ⊗A I such that δ ◦ ρ = IdA/I⊗AI . Consider the following
diagram:

A/I A/I A

A/I2 R

Id

u

p

p′

We get a lift u as g ◦ f is formally smooth. And the usual pro-
jection p′ : A → A/I2 is another lift. One checks then p′ − u ◦ p
is an R-linear derivation A → I/I2, which gives an A-module ho-
momorphism δ′ : Ω1

A/R → I/I2 sending da to p′(a) − u ◦ p(a)

and hence an A/I-module homomorphism δ : A/I ⊗A Ω1
A/R →

I/I2, da 󰀁→ p′(a)−u◦p(a). We have then δ◦ρ(a⊗b) = δ(a⊗db) =
a⊗ (p′(b)− u ◦ p(b)) = a⊗ p′(b) = a⊗ b for b ∈ I/I2.
For the second part we set the diagram:

B/J A/I A

B R
g󰂒

v

As g is formally smooth we have a lift v. To give a homomorphism
A/I → B we need to modify v a little bit to v′ such that v′|I = 0.
If v′ exists, then δ := v′ − v is an R-linear derivation such that
δ|I = −v|I . Note that v|I2 = 0 as v(I2) ⊆ J2 = 0 and hence
−v|I gives an A/I-module homomorphism I/I2 → J . But the
map HomA/I−Mod(A/I ⊗A Ω1

A/R, J) → HomA/I−Mod(I/I
2, J) is

surjective as the sequence is exact and splits. Therefore we get a
homomorphism of A/I-modules A/I ⊗A Ω1

A/R → J and therefore

a homomorphism of A-modules Ω1
A/R → J . This gives an R-linear
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derivation δ : A → J with δ|I = −v|I . v′ := δ + v is then a ring
homomorphism A → B with v′|I = 0 and hence factors through
A/I.

3.4 Jacobian Criterion

We now start to state perhaps the most important smoothness
criterion. But before that we need a little bit preparation.

Proposition 3.4.1. Let X,S be schemes, g : X → S a morphism.
g is smooth if and only if for each point x ∈ X there exists a
neighbourhood x ∈ U and sections f1, . . . , fn such that the map f
from U to An

S induced by f1, . . . , fn is étale.

U An
S

S

f :Xi 󰀁→fi

g|U

In this case, Ω1
X/S |U ∼=

󰁏n
i=1OU · dfi.

Proof. The if part is clear as An
S → S is smooth. For the only

if part we assume g to be smooth. Without loss of generality
we assume U = SpecB,S = SpecR are affine. Write A :=
R[X1, . . . , Xn] We may by restriction to smaller affines assume
that Ω1

B/R is a free module as g smooth implies Ω1
X/S is finite loc-

ally free. Say we have a basis (ω1, . . . ,ωm) with ωi =
󰁓k

j=1 bj ·
dfj . Then by localizing at nonzero bj ’s (we shrink the affine
open SpecB even smaller) and linear cancellation we can assume
(df1 . . . , dfn) is a basis (n might differ from k). Then take the
morphism f : SpecB → An

R = SpecA induced by f1, . . . , fn We
obtain immediately the isomorphism Ω1

B/R
∼= B ⊗R Ω1

A/R. We
have the exact sequence

B ⊗A Ω1
A/R → Ω1

B/R → Ω1
B/A → 0

Hence Ω1
B/A is 0, hence f is formally unramified. Furthermore the

sequence
0 → B ⊗A Ω1

A/R → Ω1
B/R → Ω1

B/A → 0

is exact and splits. By 3.3.19 we have f is formally smooth. f
being of finte type is clear.
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Theorem 3.4.2 (Jacobian Criterion). Let i : Z → An
R be a closed

immersion locally of finite presentation with codimension r. For
any point z ∈ Z let f1, . . . , fr be the sections in OX,z that cut out
Z locally. Then Z is smooth over R in a neighbourhood of z if and

only if the Jacobi matrix J :=
󰀓

∂fi
∂Xj

(z)
󰀔

i,j
has rank r in residue

field k(z).

Z An
R

SpecR

i

Proof. We need first of all a lemma.

Lemma 3.4.3. Let A be a local ring with residue field k. An A-
linear map M : Ar → An is injective and splits if and only if M
is injective as a k-linear map kr → kn.

Proof. [4] Lemma 6.3.

Denote Z = SpecB,A = R[X1, . . . , Xn]. Let I be the ideal
corresponding to i, p the prime ideal corresponding to z. Then
I/I2 ⊗ k(z) = (I/I2)p/p(I/I

2)p is an r-dimensional vector space
over k(z). Take f1, . . . , fr ∈ I/I2 such that they form a basis in
I/I2⊗k(z). Note that they generate Ip locally around z. Consider
the diagram:

󰁏r
i=1Bp · ei

󰁏n
i=1Bp · dXi

0 (I/I2)p

󰀓
B ⊗ Ω1

A/R

󰀔

p
Ω1
B/R 0

∼=

fi 󰀁→dfi=
󰁓n

j=1
∂fi
∂Xj

dXj

󰀓
∂fj
∂Xi

󰀔

i,j

ei 󰀁→fi

The second row is exact and splits. By the previous lemma the
diagram keeps exact after tensoring with k(z). But then the
left vertical arrow becomes bijective, which implies the composi-
tion from

󰁏r
i=1 k(z) · ei to k(z) ⊗ Ω1

A/R is injective, hence J T =󰀓
∂fj
∂Xi

󰀔

i,j
⊗ k(z) is injective in k(z), hence it has rank r.

Conversely assume J has rank r in k(z). Then
󰀓

∂fj
∂Xi

󰀔

i,j
is injective
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and splits. We have the following diagram:

0
󰁏r

i=1Bp · ei
󰁏n

i=1Bp · dXi

(I/I2)p

󰀓
B ⊗ Ω1

A/R

󰀔

p
Ω1
B/R 0

∼=

fi 󰀁→dfi=
󰁓n

j=1
∂fi
∂Xj

dXj

󰀓
∂fj
∂Xi

󰀔

i,j

ei 󰀁→fi

The left vertical arrow is an isomorphism after tensoring with k(z).
By Nakayama’s lemma the arrow itself is already an isomorphism
of. Bp-modules. Hence the homomorphism fi 󰀁→ dfi is injective
and locally splits. Therefore z has a small smooth neighbourhood.

Remark 3.4.4. One should compare this amazing result with the
Jacobian criterion in classical differential geometry. It shows that
the definition of formal smoothness indeed grasps the kernel of
smoothness.

3.5 Regularity and Smoothness

Recall that a scheme X is called nonsingular or regular if each
stalk OX,x is a regular local ring. With the geometric words, the
dimension of the Zariski tangent space is equal the dimension of
the local ring. We will see in this section that regularity and
flatness are closely related to smoothness. The proofs are however
quite technical and will be omitted. A general reference is [4]
Lecture 6.

Theorem 3.5.1. Let X be a scheme locally of finite type over a
field k. Let x ∈ X be a closed point with residue field k(x) which
is separable over k. If the stalk OX,x is regular, then X is smooth
in a neighbourhood of x.

Proof. [4] Theorem 6.11.

Corollary 3.5.2. Let X be a nonsingular scheme over a perfect
field k (e.g. k is algebraically closed or has characteristic 0). Then
X is smooth.
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Theorem 3.5.3. Let X be a scheme over a field k. Then the
following are equivalent.
1. X is smooth over k.
2. X is geometrically nonsingular, i.e. for an arbitrary algebraic-
ally closed field l over k, the scheme X ×k l is nonsingular.
3. There exists one algebraically closed field l over k such that
X ×k l is nonsingular.

Proof. [4] Theorem 6.8.

Theorem 3.5.4. Let X,S be schemes, f : X → S be a morphism
locally of finite presentation. Then the following are equivalent.
1. f is smooth.
2. f is flat and has smooth fibres.
3. f is flat and has smooth geometric fibres, i.e. for an arbit-
rary algebraically closed field k and an arbitrary scheme morphism
Spec k → S, the pullback X ×Spec k S → Spec k is smooth.
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Chapter 4

Cohomology

In this chapter we develop the very important cohomological tools
for study of coherent sheaves. We will use Grothendieck’s efface-
able δ-functors as our basic cohomology theory, whose properties
and related propositions will be mentioned shortly without a proof.
A reference can be found in [3] Tag 010P. There is a more general
way to construct derived functors on arbitrary abelian categories
using the theory of triangulated categories originated from algeb-
raic topology. For details see the Appendix.
We then start to give the basic facts of cohomology theory using
effaceable functors. The motivation is that we want to measure
how inexact a left exact functor on the right side is. That is, given
a left exact functor F : A → B, we want a family of functors
Hi : A → B such that H0 = F and given any exact sequence
0 → A → B → C → 0, there exists a long exact sequence:

0 H0(A) H0(B) H0(C)

H1(A) H1(B) H1(C)

H2(A) · · ·

δ0

δ1

where δi are called connecting morphisms. Since H0 = F , it ex-
tends the exact sequence 0 → F(A) → F(B) → F(C).

Definition 4.0.1. Let A,B be abelian categories. A (cohomo-
logical) δ-functor is a collection of the following data:
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1. A family of functors F i : A → B, i ≥ 0.
2. For each short exact sequence 0 → A → B → C → 0 and each
i ≥ 0 a morphism δiA,B,C : F i(C) → F i+1(A).
They should satisfy:
1. For every shor exact sequence 0 → A → B → C → 0 the
following sequence is exact:

0 F0(A) F0(B) F0(C)

F1(A) F1(B) F1(C)

F2(A) · · ·

δ0A,B,C

δ1A,B,C

2. For every morphism of short exact sequences (A → B → C) →
(A′ → B′ → C ′) and every i ≥ 0 the diagram below commutes:

F i(C) F i+1(A)

F i(C ′) F i+1(A′)
δi
A′,B′,C′

δiA,B,C

Remark 4.0.2. Note that by definition F0 is left exact.

Definition 4.0.3. Let A,B be abelian categories, (F i)i, (Gi)i two
δ-functors, a morphism of δ-functors F → G is a collection of
natural transformations ti : F i → Gi such that for each i ≥ 0 and
every short exact sequence 0 → A → B → C → 0 the following
diagram commute:

F i(C) F i+1(A)

Gi(C) Gi+1(A)
δiG

ti ti+1

δiF

Definition 4.0.4. Let A,B be abelian categories, /cF : A →
B a left exact functor. We consider the category of δ-functors
extending F : the objects are δ-functors (F i)i such that F0 = F ,
and the morphisms are morphisms (ti)i of δ-functors with t0 = Id.
A universal δ-functor extending F is an initial object in this
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category. If (F i)i is a universal δ-functor extending F , we also call
it the right derived functor of F , denoted with RiF .

Remark 4.0.5. By the universal property of initial objects, the
universal δ-functor extending F , if exists, is unique up to unique
isomorphism.

Definition 4.0.6. Let A,B be abelian categories, F : A → B a
left exact functor. Let (F i)i be a universal δ-functor extending F .
We call F i(A) the i-th cohomology of A (relative to F) for
an object A ∈ A.

Definition 4.0.7. LetA,B be abelian categories, (F i)i a δ-functor.
An object A ∈ A is called F-acyclic, if F i(A) = 0 for all i ≥ 1.

Definition 4.0.8. Let A,B be abelian categories. A functor F :
A → B is called effaceable if for any object A ∈ A, there exists
a monomorphism A ↩→ A′ such that F(A′) = 0.

Theorem 4.0.9. Let (F i)i be a δ-functor such that F i are efface-
able for all i ≥ 1, then (F i)i is a universal δ-functor extending
F0.

Theorem 4.0.10. Let A,B be abelian categories, F : A → B
a left exact functor. Assume A has enough injectives. Then the
universal δ-functor extending F exists. The construction goes as
follows: For an object A ∈ A, take an injective resolution of A,
i.e. an exact sequence 0 → A → I0 → I1 → · · · . Define Hi(A)
to be the i-th cohomology of the sequence 0 → F(I0) → F(I1) →
· · · . This is an effaceable delta-functor extending H0 = F , hence
universal.

Sketch of proof. The hardest part is to show that it is well-defined.
Indeed any choice of injective resolutions are homotopy equivalent
and hence have the same cohomology. It is effaceable because
given an injective object I, there is an injective resolution 0 →
I → I → 0. By construction Hi(I) = 0 for i ≥ 1.

Proposition 4.0.11. Let A,B be abelian categories, F : A → B
a functor having a right derived functor. If for an object A ∈ A
there exists a resolution 0 → A → C0 → C1 → · · · where Ci

are RiF-acyclic, then the i-th cohomology of the sequence 0 →
F(C0) → F(C1) → · · · coincides with RiF(A).
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Remark 4.0.12. This proposition implies to compute F i(A) it
suffices to use an F-acyclic resolution , chop off the term A and
compute the cohomology of F0(C•).

Remark 4.0.13. We have also the dual notions for right exact
functors: coeffaceable, projective resolutions, left derived functors
and so on. We omit the constructions here.

4.1 Sheaf Cohomology

We now consider the left exact functor F 󰀁→ Γ(X,F) from the cat-
egory of OX -modules on a scheme X to the category of Γ(X,OX)-
modules.

Lemma 4.1.1. The derived functor of Γ(X,−) coincides with the
derived functor of Γ(X,F (−)) from the category of OX-modules
to the category of abelian groups, where F is the forgetful functor
from the category of OX-modules to the category of sheaves of
abelian groups.

Definition 4.1.2. Let X be a scheme, F an OX -module. We
define H i(X,F) := RiΓ(X,F) to be the i-th sheaf cohomology
of F , where RiΓ is the i-th derived funtor of Γ(X,−).

Remark 4.1.3. Do not mix the sheaf cohomology of a single
object of OX -module with the cohomology of a complex with val-
ues in OX -modules. There are however indeed lots of relations
between them. For details see the Appendix.

Proposition 4.1.4. Let X be a scheme and M an injective OX-
module. Then M is flasque, i.e. for any open V ⊆ U in X the
restriction map M(U) → M(V ) is surjective.

Proof. We have the natural identificationM(U) ∼= Hom((iU )!OU ,M),
where (iU )! is the extension by zero, i.e. for a sheaf F on U ,
(iU )!F(W ) = F(W ) for W ⊆ U and (iU )!F(W ) = 0 else. Then
there is an injection (iV )!OV ↩→ (iU )!OU . As M is injective, the
induced map Hom((iU )!OU ,M) → Hom((iV )!OV ,M) is surject-
ive. By the identification above we get the result.

Theorem 4.1.5. Let X be a scheme. The category of OX-modules
has enough injectives.
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Proof. [1] Proposition III.2.2.

Proposition 4.1.6. Let F be a flasque sheaf on a scheme X, then
H i(X,F) = 0 for i ≥ 1, i.e. F is Γ-acyclic.

Proof. [1] Proposition III.2.5.

Remark 4.1.7. By 4.0.11, the cohomology of a flasque resolution
of an OX -module also computes its sheaf cohomology.

Lemma 4.1.8. Let X be an affine scheme. For any quasi-coherent
sheaf M on X, its higher cohomology vanishes, i.e. H i(X,M) = 0
for all i ≥ 1.

Next we state the theory of Čech cohomology, which is a very
important tool to compute the sheaf cohomology.

Definition 4.1.9. Let n be an integer and I, J ⊆ {0, . . . , n} two
subsets, we write I ≤ J if I ⊆ J . Given a topological space X
and n + 1 opens U0, . . . , Un, We define UI :=

󰁗
i∈I Ui. Given an

abelian sheaf F (i.e. sheaf with values in an abelian category),
and two indices I ≤ J , we define dI,J to be the restriction map
F(UI) → F(UJ).

Definition 4.1.10. Let X be a scheme, X =
󰁖n

i=0 Ui a finite open
cover, denoted U, F an abelian sheaf on X. The k-th Čech group
of F is defined as Čk(U;F) :=

󰁏
|I|=k+1 Γ(UI ,F). We define the

Čech differential map dk : Čk(U;F) → Čk+1(U;F) as

Γ(UI ,F) → Γ(UJ ,F) =

󰀫
(−1)jdI,J , if J = I ∪ {j}

0, else

Remark 4.1.11. Note that to give a map from a finite direct sum
to a finite direct sum is the same as to give maps between each
pair of components, as what we did in the definition.

Lemma 4.1.12. dk+1 ◦ dk = 0. It follows then the Čech groups
with the differentials is a complex.

Definition 4.1.13. The Čech groups together with the differen-
tials are called the Čech complex relative to U with coefficients
in F and its k-th cohomology Ȟ(U;F) is called the k-th Čech
cohomology of F relative to U.
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Remark 4.1.14. The motivation of Čech cohomology should be
considered as: How is the sheaf enriched when we restrict the sheaf
to smaller opens? The Čech cohomology gives a nice layer cut of
collections of local sections, avoiding them to be restrictions of
some global sections by modulo out the image of the former Čech
group, and ensuring that their restrictions to smaller opens vanish
by taking the kernel of the differential map.

We next show that in good conditions the Čech cohomology
agrees with the sheaf cohomology. Therefore the Čech cohomology
gives a relatively easy way to compute the sheaf cohomology.

Lemma 4.1.15. Let X be a scheme, U : X =
󰁖n

i=0 Ui a finite
open covering and F an abelian sheaf on X. We have Ȟ0(U;F) ∼=
Γ(X,F).

4.2 Ext Functor

4.3 Higher Direct Images

4.4 Serre Duality

4.5 Hilbert Polynomial



Chapter 5

Curves

5.1 Adic Spectrum

5.2 Divisors and Riemann-Roch
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Appendix A

Homological Algebra

A.1 Category of Complexes

A.2 Derived Category

A.3 Derived Functor
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Appendix B

Serre’s GAGA
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