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Abstract. Based on the existence of Bogomolov-Beauville decomposition on weakly ordinary varieties
over perfect fields in positive characteristics [PZ20], we prove the existence of a minimal decomposi-
tion in the sense of Beauville [Bea83], under a µp-simply connected assumption. We classify also
weakly ordinary Calabi-Yau threefolds whose Beauville-Bogomolov decompositions are abelian three-
folds through purely algebraic techniques, which extends a classical result of Oguiso and Sakurai [OS01]
to any perfect field of characteristic p > 2.
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Conventions and Notations. We work always over a perfect field k of characteristic p > 0, unless
specifically mentioned. A variety means always an integral, separated scheme of finite type over a
field. When no possible confusion is made, we write W = W (k) for the ring of Witt vectors over k and
K = W [1

p
] for the fraction field. For a W -module M of finite type, we write W/Tor for the torsion

free part of W . We abbreviate H
∗(X/K) := H

∗(X/W ) ⊗W K for the crystalline cohomology on a
scheme X.

1. Introduction

A useful tool to study the geometry of compact Kähler manifolds with trivial canonical bundle is
the minimal split coverings defined by Beauville in [Bea83]:

Definition 1.1. A finite covering space Y of a compact Kähler manifold X with c1(X) = 0 is called
split if Y is isomorphic to a product of a simply connected compact Kähler manifold V and a complex
torus B. A split covering V × B → X is called minimal if any other split coverings of X factors
through it.
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A split covering of X always exists due to the Beauville-Bogomolov decomposition, which was first
established by Bogomolov in [Bog74]. Beauville then proved in [Bea83] that a minimal split covering
always exist and is unique up to isomorphism.

Restricting to dimension 3, there are only three possibilities on the dimension of the complex torus
B in a split covering:

(1) Type A: dimB = 3, that is, X is covered by a complex torus of dimension 3.
(2) Type K: dimB = 1, that is, X is covered by the product of a K3 surface and an elliptic curve.
(3) Type S: dimB = 0, that is, X has finite fundamental group, and V is the universal covering

space of X.

We note that the case dimB = 2 cannot occur, as we have in this case dimV = 1, implying that V is
an elliptic curve, which contradicts the assumption that V is simply connected. Since the dimension
of B is independent of the choice of a split covering of X, the type of a Kähler threefold is well-defined.
Oguiso and Sakurai classified in [OS01] all Calabi-Yau threefolds of Type A, by studying their minimal
split coverings:

Theorem 1.2 ([OS01, Theorem 0.1]). Let X be a Calabi-Yau threefold of Type A, then by definition,
X = B/G is an étale quotient of an three-dimensional complex torus B by a finite group G whose
action on B is free. We have only two possibilities of G:

(1) G = 〈a〉 × 〈b〉 ∼= C2 × C2, and the action of G on H
0(B,Ω1

B
) is of the form

a '→

!

"
1 0 0
0 −1 0
0 0 −1

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$ .

(2) G = 〈a, b|a4 = b
2 = abab = 1〉 ∼= D8, and the action of G on H

0(B,Ω1
B
) is of the form

a '→

!

"
1 0 0
0 0 −1
0 1 0

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$ .

Moreover, both cases actually occur.

In positive characteristics, a Beauville-Bogomolov decomposition theorem for weakly ordinary smooth
projective varieties with trivial canonical bundle was proven by Patakfalvi and Zdanowicz in [PZ20].
The theorem asserts that there exists always a cover

V ×B → Z → X

such that V is a weakly ordinary projective variety with trivial Albanese, B is an abelian variety,
V ×B → Z is an infinitesimal torsor and Z → X is étale. Using this decomposition, we may modify
the definition of a minimal split covering to positive characteristics:

Definition 1.3. Over an algebraically closed field k of characteristic p > 0, a Beauville-Bogomolov
decomposition V ×B → Z → X with KX ∼ 0 is called split if V is simply connected and µp-simply
connected, and B is an abelian variety. A split covering V × B → X is called minimal if any other
split coverings of X factors through it.

Unlike the case over the complex numbers, a Beauville-Bogomolov decomposition is not necessarily
split, due to the absence of simply connected assumptions on V . Nevertheless, we are still able show
the existence of a minimal split covering, assuming that we have a split covering:

Theorem 1.4 (c.f. Theorem 3.4). Let X be a globally F -split smooth projective variety over an
algebraically closed field of characteristic p > 0 with KX ∼ 0. Assume that there exists a split covering
V × B → Z → X, then a minimal split covering of X exists and is unique (up to a non-unique
isomorphism).

Similar to the case of complex manifolds, given a variety X in the above setting, we have three
possibilities on dimV , namely 0, 2, 3, corresponding to q̂(X) = 3, 1, 0. We call these varieties of Type
A,K and S respectively, see Subsection 2.1 for a more detailed treatment. In this thesis, we study the
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minimal split coverings of weakly ordinary Calabi-Yau threefolds of Type A. Note that the definition
for Type A threefolds, that X is covered by an abelian threefold, is still valid without assuming that
the base field is algebraically closed. It eventually turns out that we have the same classification as
over complex numbers.

Theorem 1.5 (c.f. Theorem 4.6). Let X be a weakly ordinary Calabi-Yau threefold of Type A over a
perfect field k of characteristic p > 2, then by definition, X = B/G is an étale quotient of an abelian
threefold B by a finite group G whose action on B is free. We have only two possibilities of G:

(1) G = 〈a〉 × 〈b〉 ∼= C2 × C2, and the action of G on H
1(B,OB)

∨ is of the form

a '→

!

"
1 0 0
0 −1 0
0 0 −1

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$ .

(2) G = 〈a, b|a4 = b
2 = abab = 1〉 ∼= D8, and the action of G on H

1(B,OB)
∨ is of the form

a '→

!

"
1 0 0
0 0 −1
0 1 0

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$ .

Moreover, both cases actually occur.

The thesis is structured as follows:
In Section 2, we discuss the essential preliminaries for the classification theorem. In Subsection 2.1,

we review the results for Beauville-Bogomolov decomposition in [PZ20], and discuss the properties
of Type A,K,S threefolds in further details. In Subsection 2.2, we recall the construction of Nori’s
fundamental group scheme following Nori’s original paper [Nor82]. We show that the category of
principal bundles of finite groups over a proper connected reduced scheme is Tannakian, hence is
equivalent to the category of rational representations of an affine group scheme. In Subsection 2.3, we
review the construction of crystalline cohomology via the de Rham-Witt complex established by Illusie
in [Ill79]. In particular, this construction gives a Hodge decomposition on the crystalline cohomology,
which we will heavily use in the classification. We also list some specific properties of the crystalline
cohomology enjoyed by ordinary abelian varieties. In Subsection 2.4, we prove a special version of the
Hochschild-Serre spectral sequence, which gives a tool comparing sheaf cohomologies on a scheme and
on its quotient by a group.

In Section 3, we discuss the minimal split coverings in positive characteristics. Due to the possible
existence of an infinitesimal torsor in the Beauville-Bogomolov decomposition, we need to assume
extra that in a split covering V ×B → X, the variety V is simply connected and µp-simply connected,
that is, it is simply connected in the usual sense and admits also no non-trivial µp-torsors over it.
Assuming the existence of one split covering, we show that the minimal split covering exists when
the base field is algebraically closed and is unique up to a (non-unique) isomorphism. However, due
to the absence of simply connected assumptions of V in a Beauville-Bogomolov decomposition, it is
unknown whether a split covering always exists. In dimension 3, we show that a split covering always
exists for Type A or K via explicit descriptions of K-trivial varieties with trivial Albanese in small
dimensions.

In Section 4, we study and give the classification of weakly ordinary Calabi-Yau threefolds of Type
A over a perfect field. The basic idea goes as follows: If X ∼= B/G is a weakly ordinary Calabi-Yau
threefold of Type A, then G acts naturally on the crystalline cohomology H

1(B/W ) ⊗W K and its
subspace H

1(B,WOB) ⊗W K. The form of eigenvalues of any element g ∈ G on H
1(B/W ) ⊗W K

and H
1(B,WOB)⊗W K can be described very explicitly. By the bound of the degree of characteristic

polynomials, any element of G has at most order 6, and by a theorem of Hall, the group G has
order at most order 24. We then consider the irreducible decomposition of the representation G ↷
H

1(B,WOB)
∨ ⊗W K, through which we can eliminate most possibilities and obtain that G is either

C2 × C2 or D8. Finally, two examples are constructed to show that these two cases indeed exist.
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2. Preliminaries

2.1. Beauville-Bogomolov decomposition in positive characteristics. The original version of
Beauville-Bogomolov decomposition (see e.g. [Bog74]) states that for any compact Kähler manifold
X with c1(X) = 0, one can find a finite covering space

V ×B → X,

where V is a simply connected Kähler manifold with c1(V ) = 0 and B is a complex torus. In [PZ20],
an analogue for globally F -split varieties with strongly F -regular singularities is proven.

Definition 2.1. Here, “globally F -split” means that the Frobenius OX → F∗OX splits as an OX -
module homomorphism, and “strongly F -regular” means that for the stalk OX,x of the singularity

and any element c ∈ OX,x, the OX,x-module homomorphism OX,x → F
e
∗OX,x, 1 '→ c

1
pe splits.

We review here only the Bogomolov-Beauville decomposition for smooth varieties, for which a
definition of augmented irregularity is required.

Definition 2.2. Let X be a projective variety over a field k. The augmented irregularity q̂(X) of
X is defined as

q̂(X) := sup{dimAlb(X ′) | X ′ → X is étale},

where Alb(X ′) means the Albanese variety of X ′.

Theorem 2.3 ([PZ20, Theorem 1.1]). Let X be a globally F -split smooth projective variety over a
perfect field of characteristics p > 0 with KX ∼ 0, then there are morphisms

V ×B → Z → X

such that

(1) B is an abelian variety with dimB = q̂(X),
(2) V is a globally F -split projective Gorenstein variety with strongly F -regular singularities, such

that KV ∼ 0 and q̂(V ) = 0.
(3) Z → X is étale,

(4) V ×B → Z is an infinitesimal torsor under
%q̂(X)

i=1 µ
p
ji for some integers ji ≥ 0.

Moreover, one can assume that the action of
%q̂(X)

i=1 µ
p
ji on V ×B is a diagonal action.

Remark 2.4. Note that unlike the case over complex numbers, where the cover is always étale, in
positive characteristics there is an infinitesimal part. And moreover, V might be singular.

Definition 2.5. Let X be a proper variety over a field k of characteristic p. We say that X is
weakly ordinary if the Frobenius on the top sheaf cohomology H

dimX(X,OX) → H
dimX(X,F∗OX)

is bijective.

We show that over a perfect field of positive characteristic, for K-trivial normal projective varieties,
“globally F -split” is equivalent to “weakly ordinary”.

Lemma 2.6. Let X be a normal projective variety over a perfect field of characteristic p > 0 with
KX ∼ 0, then X is globally F -split if and only if X is weakly ordinary.
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Proof. Let j : U ↩→ X be the regular locus of X, then we have O(KX) ∼= j∗ωU which is also the
dualizing sheaf ω◦

X
of X. Then

OX → F∗OX splits

⇕ (OX is S2 and hence reflexive)

OU → F∗OU splits

⇕ (Grothendieck duality)

F∗ωU → ωU splits

⇕ (ω◦
X

∼= OX so ω◦
X is reflexive)

F∗ω
◦
X → ω◦

X splits

⇕ (h0(X,ω◦
X) = 1)

H
0(X,F∗ω

◦
X) → H

0(X,ω◦
X) is surjective

⇕ (Grothendieck duality)

H
dimX(X,OX) → H

dimX(X,F∗OX) is injective

⇕ (hdimX(X,OX) = 1)

H
dimX(X,OX) → H

dimX(X,F∗OX) is bijective.

□

Restricting ourselves to globally F -split K-trivial smooth threefolds, we have only three possible
cases on the dimension of V :

(1) Type A: V = Spec k, dimB = 3. That is, X admits a finite cover from an abelian variety.
(2) Type K: dimV = 2, dimB = 1. In this case, B is an elliptic curve and V is a globally F -split

projective Gorenstein surface with strongly F -regular singularities and q̂(V ) = 0.
(3) Type S: dimV = 3, B = Spec k. There is little to say in this case.

There are also extra observations we can make from the categorization above.

(A) In Type A case, we have an infinitesimal quotient of an abelian variety B → Z. Since any
infinitesimal group action on an abelian variety is a translation, the quotient Z has to be an
abelian variety as well. Moreover, since the quotient is an isogeny, we have an isomorphism
H

d(B,OB) ∼= H
d(Z,OZ). This ismorphism is Frobenius-equivariant, which shows that Z is

also weakly ordinary. We prove later in Proposition 2.36 that an abelian variety is ordinary if
and only if it is weakly ordinary. Therefore, the Type A threefolds are precisely those admitting
a finite étale cover from an ordinary abelian threefold.

(K) Let ε : &V → V be the minimal resolution of V , then it is easy to see that V being weakly

ordinary implies &V being weakly ordinary, hence &V is globally F -split. By the classification of
K-trivial regular projective surfaces, a list of which can be found in [PZ20, Lemma 12.1], the

surface &V is either a K3 surface or a non-classical Enriques surface in characteristic 2, which is
an étale quotient of a K3 surface by the group Z/2Z. Hara and Watanabe proved in [HW02]
that a Q-Gorenstein strongly F -regular local ring has log terminal discrepancies. In our case,
the surface V with possibly strongly F -regular singularities is Gorenstein, which means that
it has at most canonical singularities. Besides, the morphism V ×B → Z is a µpj -torsor for an
integer j ≥ 0. Since Z is K-trivial and any µpj -action on B must preserve the canonical form,
we see that the µpj -action preserves the canonical form of V as well. In the case where V is
a K3 surface with at most canonical singularities, by [Mat23, Theorem 1.2], we may obtain
p
j ≤ 8.

(S) If one considers a smooth compact K-trivial Kähler threefold of Type S over C (the types
are defined similarly), then it is a direct consequence of the Beauville-Bogomolov decompo-
sition that its fundamental group is finite. However, whether a Type S threefold in positive
characteristics has finite fundamental group is still an open problem.
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2.2. Nori fundamental group scheme. Let X be a scheme over a field k, and let x : Spec k̄ → X

be a geometric point. Let Fét(X) be the category of finite étale coverings of X, and let FSets be the
category of finite sets. We can define a functor T : Fét(X) → FSets by sending π : Y → X to π−1(x).
The category Fét(X) together with T is a so called “Galois category with fibre functor T”. The étale
fundamental group π1(X,x) of X with base point x is then defined as the group of invertible natural
transformations from T to itself:

π1(X,x) := Aut(T ).

By some abstract nonsense in category theory, one can show that Fét(X) is equivalent to the category
of finite sets with π1(X,x)-actions, and under this identification, the fibre functor T is isomorphic
to the forgetful functor π1(X,x) − FSets → FSets. We refer to [Sta25, Tag 0BMQ] for a detailed
treatment on Galois categories.

The étale fundamental group π1(X,x) is a profinite group and characterizes all Galois covers of X
in the following sense: There is a principal π1(X,x)-bundle P on X together with a geometric point
p : Spec k̄ → P lying over x, such that given a finite group G, a principal G-bundle Q together with a
geometric point q : Spec k̄ → Q, there exist a unique pair (ϕ, f) satisfying:

(1) ϕ : πN

1 (X,x) → G is a homomorphism of groups,
(2) f : P → Q is a morphism of X-schemes intertwines P and Q with respect to the π1(X,x)-

and G-action, i.e. the following diagram commutes

π1(X,x)× P P

G×Q Q,

ϕ×f f

where the horizontal arrows are group actions of π1(X,x) and G,
(3) f(q) = p.

We are interested in a generalized version in positive characteristics: we want a group scheme πN

1 (X,x)
together with a principal πN

1 (X,x)-bundle satisfying the same universal property, but with “any finite
group G” replaced by “any finite group scheme G”. In other words, we would like to have a group
scheme that characterizes all finite torsors over X, but not only the étale ones. Nori proved in [Nor82]
the following:

Theorem 2.7 ([Nor82]). Let X be a proper connected reduced scheme over a field k, and let x :
Spec k → X be a k-rational point. There exists an affine group scheme πN

1 (X,x) over k, which is an
inverse limit of finite group schemes, together with a principal πN

1 (X,x)-bundle P and a k-rational
point p : Spec k → P lying over x, such that given a finite group scheme G, a principal G-bundle Q
together with a k-rational point q : Spec k → Q, there exists a unique pair (ϕ, f) satisfying:

(1) ϕ : πN

1 (X,x) → G is a morphism of group schemes,
(2) f : P → Q is a morphism of X-schemes that intertwines the πN

1 (X,x)- and G-action,
(3) f(q) = p.

Naturally, πN

1 (X,x) is called the Nori fundamental group scheme with base point x. It is note-
worthy that the base point here is a k-rational point instead of a geometric point in the case of étale
fundamental group.

We review now shortly the construction of the Nori fundamental group, following [Nor82]. The
sketchy idea is that we replace the role of a Galois category with a Tannakian category, which turns
out to be equivalent to the category of finite dimensional representations of an affine group scheme.

Definition 2.8. A tensor category C is a category equipped with a functor ⊗ : C×C → C such that

(1) there exists a functorial isomorphism lA between X ⊗ (Y ⊗ Z) and (X ⊗ Y )⊗ Z,
(2) there exists a functorial isomorphism lC between X ⊗ Y and Y ⊗X,
(3) there exists an identity object 1 ∈ C for the tensor ⊗, i.e. 1⊗− : C → C is an equivalence.

A functor F : C → D of tensor categories is a functor of categories such that
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(1) F commutes with ⊗, i.e. F ◦ ⊗ = ⊗ ◦ (F × F ),
(2) F commutes with lA and lC in the above sense,
(3) F (1) is isomorphic to 1 ∈ D.

Let k be a field. A Tannakian category C is a small k-lilnear abelian tensor category equipped with
a k-linear abelian tensor functor T : C → FVeck, called the fibre functor, such that

(1) the k-semialgebra End(1) is isomorphic to k,
(2) for every L ∈ C such that dimT (L) = 1, there exists an object L−1 ∈ C such that L⊗L

−1 ∼= 1.

A functor F : C → D of Tannakian categories is a k-linear abelian functor of tensor categories
such that TD ◦ F = TC .

Definition 2.9. Let C be a Tannakian category, and let R be a k-algebra. We can define the pullback
CR be the category with the same objects as C, but extend the morphisms R-linearly: HomCR(X,Y ) :=
HomC(X,Y )⊗kR. The functors⊗ and T can also be extendedR-linearly to functors⊗R : CR×CR → CR
and TR : CR → FModR. We then define the automorphism functor of T to be

AutT : k −Alg → Sets

R '→ Aut(TR) := {invertible natural transformations TR → TR}.
Theorem 2.10 ([DM82, Theorem 2.11]). Let C be a Tannakian category over a field k with fibre
functor T , then

(1) AutT is representable by an affine group scheme,
(2) C is equivalent to AutT −FRepk, the category of finite dimensional affine AutT -representations

over k,
(3) under the equivalence C ∼= AutT −FRepk, the fibre functor T is identified with the forgetful

functor AutT −FRepk → FVeck.

Moreover, let D be an another Tannakian category over k with fibre functor T
′, then any functor

C → D is induced by a group scheme homomorphism AutT ′ → AutT .

Assume that X is a proper connected reduced scheme over a field k. Our aim now is to find a
Tannakian category that encodes all the finite torsors over X. We note the following:

Proposition 2.11 ([Nor82, Proposiiton 2.9]). Let G be an affine group scheme over k. There is a
one-to-one-to-one correspondence between

(1) tensor functors F : G−Repk → QCoh(X), where G−Repk is the category of (possibly infinite
dimensional) affine G-representations over k,

(2) principal G-bundles P over X,
(3) tensor functors F : G − FRepk → QCoh(X), where G − FRepk is the category of finite

dimensional affine G-representations over k.

Sketch of proof. (1)⇒ (2): Let F be a functor from G−Repk to QCoh(X), and let A be the coordinate
ring of G. Consider the left regular representation G ↷ A, which defines a coherent sheaf F (A) on
X. One can show (c.f. [Nor82, Lemma 2.2 & Lemma 2.3]) that F (A) has an OX -algebra structure
and SpecOX

(F (A)) is the principal G-bundle that we desire.

(2) ⇒ (3): Given a principal G-bundle P and a finite dimensional G-representation V , we can take
the quotient of the diagonal action G ↷ P ×V and consider the morphism f : P ×V/G → P/G ∼= X.
One defines then F (V ) := f∗OP×V/G.

(3) ⇒ (1): Given a functor F : G−FRepk → QCoh(X), one can extend it to the category G−Repk
by defining F (W ) := lim−→V⊂W finite

F (V ). □

Note that the proposition indicates also that the essential image of any tensor functor G−FRepk →
QCoh(X) lies in the category Vec(X) of vector bundles on X. Moreover, Nori observed more con-
straints on the essential image, as we will discuss now.

Definition 2.12. A vector bundle on X is called Nori semi-stable if it is semi-stable of degree 0
when pulled back to the normalization of each integral curve on X. The category of Nori semi-stable
vector bundles over X is denoted SS(X).
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Definition 2.13. The set of all vector bundles on X forms a semi-ring with respect to direct sums and
tensor products, and the expressions f(V ) for f ∈ N[T ] a polynomial with positive integer coefficients
make therefore sense. A vector bundle V is called finite if there exist polynomials f, g ∈ N[T ] such
that f(V ) ∼= g(V ).

Proposition 2.14 ([Nor82, Corollary 3.5]). Finite vector bundles are Nori semi-stable.

Definition 2.15. A vector bundle V is called essentially finite if it is in the abelian category
EFVec(X) generated by all finite vector bundles in SS(X).

Proposition 2.16 ([Nor82, Proposition 3.8]). If F : G− FRepk → Vec(X) is a tensor functor, then
the image F (V ) is essentially finite for any G-representation V .

Finally, Nori showed that EFVec(X) is Tannakian with respect to the fibre functor x
∗, sending a

vector bundle V to V |x for a k-raitonal point x. Therefore, the category EFVec(X) is equivalent to
Autx∗ −FRepsk. We define then πN

1 (X,x) := Autx∗ to be the Nori fundamental group scheme of X
with base point x, and define P to be the principal πN

1 (X,x)-bundle given by Proposition 2.11. We
omit then the verification on their universal properties. The fact that πN

1 (X,x) is an inverse limit
of finite group schemes corresponds to the fact that EFVec(X) is the direct limit of its subcategories
with finite generators, which are equivalent to the categories of finite dimensional representations of
finite group schemes.

As one can expect, the Nori fundamental group scheme enjoys many similar properties as the étale
fundamental group does. We need for example the following for the proofs later.

Theorem 2.17 ([MS02, Theorem 2.3]). Let X,Y be two proper connected reduced scheme over an
algebraically field k with base points x ∈ X, y ∈ Y . Then the natural map

πN

1 (X × Y, (x, y)) → πN

1 (X,x)× πN

1 (Y, y)

induced by the two projections is an isomorphism.

2.3. Crystalline cohomology via de Rham-Witt complex. Let X be a smooth proper scheme of
pure dimension d over a perfect field k of characteristic p > 0. The analogue of l-adic cohomology over
p-adic numbers, namely H

i(X,Zp) := lim←−H
i

ét(X,Z/pnZ), does not behave well as one would expect
for a Weil cohomology theory. Indeed, we can consider the Artin-Schreier sequence

0 Z/pnZ OX OX 0
1−F

n

which is exact over the étale site. Then, we can prove the comparison theoremH
i

ét(X,F) ∼= H
i

Zar(X,F)
for any quasi-coherent sheaf F ([Mil80, Chap. III, Proposition 3.7 & Remark 3.8]). This shows in
particular H i

ét(X,OX) = 0 for all i > d and hence H
i

ét(X,Z/pnZ) = 0 for all i > d+ 1 as well.
As an attempt for a Weil cohomology theory valued over W (k), Serre considered in [Ser58b] for

a scheme X the Zariski sheaves WnOX , with value WnOX(SpecA) = Wn(A) the Witt vectors of
length n for each affine open in X, and the inverse limit of their sheaf cohomologies H i(X,WOX) :=
lim←−n

H
i(X,WnOX), which is now usually called theWitt vector cohomology. It is shown in [Ser58a]

that for an abelian variety, one can get a reasonable first cohomology group by considering the direct
sum of the first Witt vector cohomology group and the Tate module of the dual abelian variety. Still,
this cohomology theory does not behave as a Weil cohomology theory in general, as Hj(X,WOX) = 0
for j > d.

If we consider the crystalline cohomology defined on the crystalline site, this will eventually turn
out to be a Weil cohomology theory valued in the Witt numbers W (k)[1

p
]. In [Ill79], Illusie gave

an alternative construction of crystalline cohomology via the so-called de Rham-Witt complex. The
de Rham-Witt complex shows not only the relation between crystalline cohomology and Witt vector
cohomology, but it also endows a Hodge decomposition on the crystalline cohomology, which we will
use in the proof later. We review in this section the construction of de Rham-Witt complex following
[CL98].
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Definition 2.18. The de Rham-Witt complex W•Ω
•
X
is a projective system (WnΩ

•
X
)n∈N of strictly

anti-commutative graded algebras together with a differential d such that d(WnΩ
i

X
) ⊆ WnΩ

i+1
X

and
d
2 = 0. In other words, the differential gives WnΩ

•
X

the structure of a complex

· · · 0 WnΩ
0
X

WnΩ
1
X

WnΩ
2
X

· · · .d d d

Moreover, W•Ω
•
X

satisfies also

(1) the projective system (WnΩ
0
X
)n is canonically isomorphic to (WnOX)n,

(2) there is an additive operator V : WnΩ
i

X
→ Wn+1Ω

i

X
such that

• it agrees with the usual Verschiebung on WnΩ
0
X

∼= WnOX , and
• there are identities

V (x dy) = V x d(V y), and (d[x])V y = V ([x]p−1
d[x] y)

where [x] ∈ WnOX is the Teich-Müller representative of x ∈ OX ,
(3) W•Ω

•
X

is initial in the category of all projective systems satisfying (1) and (2).

We can construct the de Rham-Witt complex WnΩ
•
X

formally as a quotient of Ω•
WnOX

, inductively
on n: We define first W1Ω

•
X

:= Ω•
X
, and V : W0Ω

•
X

= 0 → W1Ω
•
X

is just the zero map. Assume that
we have constructed WnΩ

•
X

and the operator V : Wn−1Ω
•
X

→ WnΩ
•
X
. Let πn : Ω•

WnOX
→ WnΩ

•
X

be
the quotient map. We define a homomorphism

ε : WnO⊗i+1
X

→ Ωi

WnOX
, a⊗ x1 ⊗ · · ·⊗ xi '→ a · dx1 · · · dxi

and write Ki for the kernel of the composition πn ◦ ε : WnO⊗i+1
X

→ Ωi

WnOX
→ WnΩ

i

X
. Define another

homomorphism

v : WnO⊗i+1
X

→ Ωi

Wn+1OX
, a⊗ x1 ⊗ · · ·⊗ xi '→ V a · dV x1 · · · dV xi.

One can show that
'

i
v(Ki) is a graded ideal in Ω•

Wn+1OX
. Let I ⊂ Ω1

Wn+1OX
be the subsheaf

generated by elements of the form (d[x])V y − V ([x]p−1
d[x] y), and let N be the graded ideal in

Ω•
Wn+1OX

generated by
'

i
v(Ki) and I. We define then Wn+1Ω

•
X

:= Ω•
Wn+1OX

/N . The restriction

map Wn+1Ω
•
X

→ WnΩ
•
X

is inherited from the restriction Res : ΩWn+1OX
→ ΩWnOX

by showing that

πn ◦Res(N) = 0. Similarly, the map v descends to a map V : WnΩ
i

X
→ Wn+1Ω

i

X
as πn+1 ◦ v(Ki) = 0.

This finishes the construction of Wn+1Ω
•
X
. We refer to [Ill79, Théorème I.1.3] for further details.

Proposition 2.19 ([CL98, Proposition 3.1]). There exists a unique additive operator F : WnΩ
•
X

→
Wn−1Ω

•
X

whose restriction on WnOX is the usual Frobenius σ and satisfying

F (ab) = F (a)F (b), FdV = d on WnΩ
0
X

∼= WnOX , and F (d[x]) = [x]p−1
d[x].

Moreover, there are also the identities

FV = V F = p, FdV = d, and xV y = V (F (x)y).

We can compare the operator F with the endomorphism F on W•Ω
• induced by the Frobenius σ

on W•OX . One can show that F = p
i
F on W•Ω

i, or in other words, the previous proposition shows
that the Frobenius on W•Ω

i is divisible by p
i.

Example 2.20 ([CL98, Section 3.3]). We may explicitly describe the de Rham-Witt complex of the
ring A := Fp[T1, . . . , TN ]. Define two other rings

B := Zp[T1, . . . , TN ], C := Qp

(
T
p
−∞

1 , . . . , T
p
−∞

N

)
=

*

r≥0

Qp

(
T
p
−r

1 , . . . , T
p
−r

N

)
.

An m-form ω ∈ Ωm

C/Qp
can be uniquely written as a sum

ω =
+

1≤i1≤···≤im≤N

ai1,...,im(T1, . . . , TN )
dTi1

Ti1

∧ · · · ∧ dTim

Tim

.
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We call ω integral if all of the ai1,...,im are in the subring Zp

(
T
p
−∞

1 , . . . , T
p
−∞

N

)
⊂ C. Let Em ⊂ Ωm

C/Qp

be the colllection of m-forms ω such that ω and dω are integral. For example, T
1
p

1 is not in E
0 but

pT

1
p

1 is in E
0. Define two operators:

F : Ti '→ T
p

i
, V : Ti '→ pT

1
p

i

and extend them to operators on C such that F and 1
p
V are homomorphisms of Qp-algebras. They

induce two corresponding operations on Ω•
C/Qp

, and we denote them also by F and V . One checks that

the subscomplex E
• is preserved by F and V . Then we can define E

m
n := E

m
/(V n

E
m + dV

n
E

m−1).
The operator V on E

m descends to an operator E
m
n → E

m

n+1, which we denote also with V by an

abuse of notation. One can verify that V (xdy) = V x d(V y), V (d[x]) = [x]p−1
d[x] and E

0
n
∼= WnA. By

the universal property of de Rham-Witt complex, there is a unique morphism W•Ω
•
A
→ E

•
• . Illusie

showed in [Ill79, Théorème I.2.5] that it is an isomorphism.

Denote with WΩ•
X

:= lim←−WnΩ
•
X

the projective limit of the system (WnΩ
•
X
)n∈N. Illusie proved the

following two results:

Proposition 2.21 ([Ill79, Proposition II.2.1]). Assume that X is a smooth proper variety. The natural
maps

RΓ(WΩ•
X) → R lim←−

n

RΓ(WnΩ
•
X)

H
j(X,WΩi

X) → lim←−
n

H
j(X,WnΩ

i

X)

are isomorphisms.

Proposition 2.22 ([Ill79, Théorème II.1.4]). Assume the same setting for X. There is a natural
isomorphism between the cohomology of X on the crystalline site Cris(X/Wn) and the hypercohomology
of the de Rham-Witt complex WnΩ

•
X
:

H
∗(X/Wn) ∼= H∗(WnΩ

•
X),

which is compatible with the restrictions H
∗(X/Wn+1) → H

∗(X/Wn) and Wn+1Ω
•
X

→ WnΩ
•
X

. Combining these two propositions, we obtain

Theorem 2.23. Let X be a smooth proper variety. There is a natural isomorphism between the
crystalline cohomology of X and the hypercohomology of the de Rham-Witt complex of X:

H
∗(X/W ) ∼= H∗(WΩ•

X).

Proof. By definition H
∗(X/W ) = lim←−n

H
∗(X/Wn), so it suffices to show that the natural map

R
iΓ(WΩ•

X) = Hi(R lim←−
n

RΓ(WnΩ
•
X)) → lim←−

n

R
iΓ(WnΩ

•
X)

is an isomorphism. It was shown in [Ill79, Théorème II.2.7] that there are isomorphisms

RΓ(WΩ•
X)⊗L

W Wn
∼= RΓ(WnΩ

•
X).

By [BO78, Proposition B.5], we see that RΓ(WnΩ
•
X
) is a quasi-consistent projective system indexed

by n in the sense of [BO78, Definition B.4]. So the result follows from [BO78, Proposition B.7.2]. □
The isomorphism implies in particular that one can compute the crystalline cohomology via the

spectral sequence of filtered complex:

E
ij

1 = H
j(X,WΩi

X) ⇒ H
i+j(X/W ),

which is equivariant with respect to F = p
i
F on H

j(X,WΩi

X
) and the Frobenius σ on H

i+j(X/W ).
Inspired by above, we would like to study in details the structure of Frobenius on modules over the

Witt ring, hence the following definition.
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Definition 2.24. An F -crystal is a free W -module M of finite rank along with an injective σ-linear
endomorphism ϕ : M → M , i.e. ϕ(am) = σ(a)ϕ(m) for all a ∈ W,m ∈ M .

An F -isocrystal is defined identically as an F -crystal but with W replaced by K := W [1
p
].

A morphism of F -crystals (resp. F -isocrystals) u : M → N is a homomorphism of W -modules
(resp. K-vector spaces) such that ϕN ◦ u = u ◦ ϕM .

An isogeny of F -crystals is a morphism whose induced homomorphism M ⊗W K → N ⊗W K is
an isomorphism.

Example 2.25. (1) The torsion free part H
j(X,WΩi

X
)/Tor of the sheaf cohomology of the de

Rham-Witt complex is an F -crystal with respect to F or F = p
i
F . The fact that F is

injective can be derived from the equality FV = V F = p.
(2) The torsion free part of the crystalline cohomology H

j(X/W )/Tor is an F -crystal with respect
to the Frobenius σ induced by the Frobenii on the crystalline sites. The Poincaré pairing

H
j(X/W )×H

2d−j(X/W ) → H
2d(X/W )

Tr−→ W satisfies 〈σ(x),σ(y)〉 = p
dσ〈x, y〉, c.f. [Ber74,

Proposition VII.3.2.4]. Hence the injectivity of σ follows from the non-degeneracy of the pairing
〈−,−〉.

(3) Let Wσ[T ] be the non-commutative ring of one-variable polynomials with coefficients in W

subject to the relation Ta = σ(a)T for a ∈ W . Let α = r/s be a non-negative rational number
where r and s are coprime. The module Mα = Wσ[T ]/(T

s−p
r) can be made into an F -crystal

by letting ϕ(m) := Tm. The injectivity of ϕ follows directly from T
s = p

r.

The last example is of importance by the following description on the category of F -isocrystals, due
to Manin.

Theorem 2.26 ([Man63, Theorem 2.1]). If k is algebraically closed, then the category of F -isocrystals
is semisimple and the simple objects are Mα ⊗W K, i.e. every F -isocrystal is isomorphic to a direct
sum

'
α∈Q+(Mα ⊗W K)nα with finitely many nα > 0.

As a direct corollary, over an algebraically closed field, every F -crystal is isogenous to a direct sum'
α∈Q+ M

nα
α .

Definition 2.27. Let M ∼
'

α∈Q+ M
nα
α be the decomposition of an F -crystal M up to isogeny.

The collection of α such that nα > 0 is called the slopes of M , and nα · rankW (Mα) is called the
multiplicity of the slope α. Over an non-algebraically closed field, the slopes and multiplicities of
M is defined to be the slopes and multiplicities of M ⊗W W (k̄).

With the language of F -crystals, the spectral sequence of filtered complex is indeed a spectral
sequence of F -crystals (up to torsion):

E
ij

1 =
,
H

j(X,WΩi

X), piF
-
⇒

,
H

i+j(X/W ),σ
-
.

Since FV = V F = p, the slope of F = p
i
F must be in the interval [i, i+ 1]. Illusie proved then

Theorem 2.28 ([Ill79, Théorème II.3.2, Corollaire II.3.5]). Assume that X is a proper smooth variety.
The spectral sequence of the filtration on WΩ• degenerates at page E1 up to torsion. In particular,
there is an isomorphism of F -isocrystals

(Hj(X/W )⊗W K,σ)[i,i+1)
∼= (Hj−i(X,WΩi

X)⊗W K, p
i
F ).

Moreover, we can give finer restrictions on the slopes:

Proposition 2.29 ([CL98, Exemple II.1.2]). Assume furthermore that X is projective. The F -crystal
H

j(X/W )/Tor has slopes in [0, j] if 0 ≤ j ≤ d, and in [j − d, d] if d ≤ j ≤ 2d.

Proof. We prove the statement via an induction on d. We first remark that the Poincaré pairing as in
Example 2.25 implies that the slopes of H∗(X/W )/Tor are in [0, d]. The statement for the case when
X is a curve follows then from the Poincaré pairing. Now assume that the statement holds for varieties
of dimension d−1. Given X of dimension d, one can pick a general hyperplane section H, and consider
the restrictions H

∗(X/W )/Tor → H
∗(H/W )/Tor, which is injective for degree j ∈ [0, d − 1] by the
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weak Lefschetz theorem (see [Ber73]), showing the statement for j ∈ [0, d− 1]. The case j ∈ [d+1, 2d]
follows then by Poincaré duality as in Example 2.25. So we have now only H

d(X/W ) left, but the
statement for which follows directly from the Poincaré pairing. □

We restrict ourselves then to the case where B is an abelian variety of dimension d. Analogous to
the structure of étale cohomology of an abelian variety, we have the following result:

Proposition 2.30 ([Ill79, II.7.1]). The first crystalline cohomology H
1(B/W ) of an abelian variety

B of dimension d has no torsion, and there is a natural isomorphism of F -crystals

H
j(B/W ) ∼=

j.
H

1(B/W )

for all j ∈ N. In particular, H1(B/W ) has rank 2d.

Similar to the identification H
1(B,Ql)

∨ ∼= lim←−B[ln], we have

Proposition 2.31 ([Ill79, Remarque II.3.11.2]). There is a natural isomorphism

H
1(B/W ) ∼= D(B[p∞])

between the first crystalline cohomology of B and the contravariant Dieudonné module of the p-divisible
group B[p∞] := lim←−B[pn].

We refer to [Dem06] for a detailed treatment on Dieudonneé modules.

Definition 2.32. Let B be an abelian variety of dimension d. The p-rank of B is defined as

p− rank(B) := dimFp B[p](k).

An abelian variety B is called ordinary if p− rank(B) = d.

We then show that for an abelian variety, the two notions of “ordinary” and “weakly ordinary”
agree. To prove this, two small lemmas are needed.

Lemma 2.33. The natural map H
j(X,WOX)/V H

j(X,WOX) → H
j(X,OX) is injective for any

smooth proper variety X.

Proof. By Proposition 2.21, we see that the Witt vector cohomology H
∗(X,WOX) is indeed the sheaf

cohomology associated to the sheaf WOX : SpecA '→ W (A). It is easy to check that the following
sequence is exact:

0 WOX WOX OX 0.V Res

So the lemma follows from taking cohomology long exact sequence of the above short exact sequence.
□

Remark 2.34. A subtlety here is worth mentioning. One need to be careful when distinguishing the
operator V on an F -crystal M and the Verschiebung V on the Witt vectors. So VM can be interpreted
as the image of the operator V , or the submodule of M generated by the ideal V ⊂ W . The notation
V in the lemma above refers to the former one, namely the operator V on the F -crystal Hj(X,WOX).
If an F -crystal has slope 0, for example H

∗(B,WOB) for an ordinary abelian variety B, then the two
notions of V agree, and we will use this fact in Section 4. In general however, these two notions are
not the same. We can take for example M = W ⊕W · T , which is a free W -module generated by 1
and T . The operators F and V acts as follows:

F (a) = σ(a) · T,
F (a · T ) = p · σ(a),

V (a) = σ−1(a) · T,
V (a · T ) = p · σ−1(a),

where σ is the Frobenius on W . One can check that this F -crystal is of slope 1
2 , and appears as the

first crystalline cohomology group of a supersingular elliptic curve. It is then not hard to show that
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M/VM ∼= W/pW is one-dimensional over the field W/pW , but M/(VW ) ·M is two-dimensional, as
M is of rank 2 over W .

Lemma 2.35 ([Ill79, II.7.1.2]). We have the following equation on the p-rank of an abelian variety
B:

p− rank(B) = rankH1(B/W )=0 = rankH1(B/W )=1,

where H
1(B/W )=0 (resp. H

1(B/W )=1) is the F -subcrystal of H1(B/W ) with slope 0 (resp. 1).

Proposition 2.36. Let B be an abelian variety of dimension d. The following are equivalent:

(1) The p-rank of B is d;
(2) The F -crystal H1(B,WOB)/Tor is purely of slope 0;
(3) The F -crystal Hd(B,WOB)/Tor has rank 1 and is of slope 0;
(4) The Frobenius action on H

1(B,WOB)/Tor is an isomorphism;
(5) The Frobenius action on H

d(B,WOB)/Tor is an isomorphism;
(6) The Frobenius action on H

1(B,OB) is an isomorphism;
(7) The Frobenius action on H

d(B,OB) is an isomorphism.

In particular, B is ordinary if and only if B is weakly ordinary.

Proof. We show the equivalence as indicated in the graph

(1) (2) (4) (6)

(3) (5) (7).

(1) ⇒ (2): The equation p− rank(B) = rankH1(B/W )=0 = rankH1(B/W )=1 = d by Lemma 2.35
together with rankH1(B/W ) = 2d by Proposition 2.30 implies directly H

1(B/W ) = H
1(B/W )=0 ⊕

H
1(B/W )=1 and we can conclude using Theorem 2.28.
(2) ⇒ (1): By Proposition 2.29, the slopes of H1(B/W ) are in [0, 1]. By Lemma 2.35, we have

p−rank(B) = rankH1(B/W )=0 = rankH1(B/W )=1. If the p-rank of B is less than d, then H
1(B/W )

will have a slope in (0, 1), which by Theorem 2.28 contributes to the slopes of H1(B,WOB)/Tor, a
contradiction.

(2)⇒ (3): By Proposition 2.29, the F -crystalH1(B/W ) decomposes asH1(B/W ) = H
1(B/W )=0⊕

H
1(B/W )=1. Then by Lemma 2.35, we get rankH1(B/W )=0 = rankH1(B/W )=1 = d. In particular,

we have H
d(B,WOB) =

/
d
H

1(B,WOB) up to torsion, so H
d(B,WOB) is of rank 1.

(3) ⇒ (2): By Proposition 2.30, we get rankH1(B/W )=0 = d and hence rankH1(B/W )=1 = d as
well by Lemma 2.35. Since rankH1(B/W ) = 2d, this shows already that H

1(B/W ) has no slope in
(0, 1).

(2) ⇔ (4): Clear.
(3) ⇔ (5): Clear.
(4) ⇒ (6): Since FV = V F = p on H

1(B,WOB)/Tor and F is an isomorphism, the subset
V (H1(B,WOB)/Tor) can be identified as p(H1(B,WOB)/Tor). By Lemma 2.33, the natural map
H

1(B,WOB)/pH
1(B,WOB) = H

1(B,WOB)/V H
1(B,WOB) ↩→ H

1(B,OB) is injective, hence is
also surjective by a comparison on ranks. This implies then the projection H

1(B,WOB)/Tor →
H

1(B,OB) is also surjective. If N ⊂ H
1(B,OB) is a subspace on which the Frobenius is not an

isomorphism, then its preimage in H
1(B,OB)/Tor is a non-zero submodule on which the Frobenius

is not an isomorphism. This yields a contradiction.
(6) ⇒ (4): The natural map H

1(B,WOB)/V H
1(B,WOB) ↩→ H

1(B,OB) is injective by Lemma
2.33. If we can find a non-zero subcrystal M ⊂ H

1(B,WOB) with non-zero slope, then the Frobenius
will be nilpotent on M/VM ⊂ H

1(B,OB). A contradiction.
(5) ⇔ (7): The proof is identical with (4) ⇔ (6) □

We prove also the following lemma concerning the structure of Witt vector cohomology on an
ordinary abelian variety for later use.
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Lemma 2.37. For an ordinary abelian variety B of dimension d, the natural map
/

j
H

1(B,WOB)⊗W

K → H
j(B/K) is injective and the image is H

j(B,WOB) ⊗W K. As a consequence, there is an
isomorphism of F -isocrystals

/∗
H

1(B,WOB)⊗W K ∼= H
∗(B,WOB)⊗W K.

Proof. By Proposition 2.30, one has an isomorphism of F -isocrystals H∗(B/K) ∼=
/∗

H
1(B/K), from

which we may deduce directly the injectivity. By Proposition 2.36, the F -isocrystalH1(B,WOB)⊗WK

is purely of slope 0, so the image of
/

j
H

1(B,WOB)⊗W K is precisely the slope 0 part of Hj(B/K).
By Theorem 2.28, the slope [0, 1) part of the F -isocrystal Hj(B/K) is H

j(B,WOB) ⊗W K. By
Proposition 2.36 and Lemma 2.35, the F -isocrystal H1(B/K) has only slopes 0 and 1, so again by
Proposition 2.30, the slopes of Hj(B/K) are all integers, so H

j(B,WOB)⊗W K is purely of slope 0,
whence the surjectivity. □

2.4. Hochschild-Serre spectral sequence. The Hochschild-Serre spectral sequence is a tool for
comparing various cohomology groups of a scheme with the ones of its quotient by a group. The
originial version of the Hochschild-Serre spectral sequence can be found in [HS53], which concerns
mainly the case for G-modules. We prove here a version which we need for later use.

Proposition 2.38. Let X be a scheme over k admitting an action by a group G, and assume that the
quotient π : X → Y = X/G exists. Given a sheaf F of OY -modules, and assume that the natural map
H

0(Y,F) → H
0(X,π∗F)G is an isomorphism (which holds in particular for F = OY ), then there is a

spectral sequence

E
pq

2 = H
p(G,H

q(X,π∗F)) ⇒ H
p+q(Y,F)

Proof. One can consider the composition of functors

OY −Mod → G−Mod → Ab,

F '→ H
0(X,π∗F) '→ H

0(X,π∗F)G = H
0(Y,F).

The claim follows then by applying the Grothendieck spectral sequence, see e.g. [Sta25, Tag 015N]. □

In particular, if G is linearly reductive over k, e.g. if G is finite and |G| is not divisible by p, then
all higher group cohomologies of G vanish, hence

Corollary 2.39. In the above setting, if G is linearly reductive, then we have an isomorphism

H
j(Y,F) = H

j(X,F)G.

for all j ≥ 0.

3. Minimal split coverings

Let X be a compact Kähler manifold with c1(X) = 0, then by [Bog74], X admits a Beauville-
Bogomolov decomposition V ×B → X, where V is a simply connected Kähler manifold with c1(V ) = 0
and B is an abelian variety. We call such a decomposition also a split covering, following [Bea83].
The expression “split” is due to that the Albanese of V ×B is the projection onto B, which admits a
section. A natural question is: How many split coverings does X have? And the answer is not hard:
X admits infinitely many split coverings. Indeed, let ϕ : V × B → X be a split covering, and let
[n] : B → B be the endomorphism of multiplication by n, then ϕ ◦ (Id×[n]) : V ×B → V ×B → X is
again étale. By applying different integers n, we obtain infinitely many non-isomorphic split coverings.

An observation from the argument above is, if the relative automorphism group Aut(V × B/X)
contains a translation of B, then we can take the quotient of that translation and get a new abelian
variety B

′ together with a split covering V ×B
′ → X, which is smaller than V ×B → X in the sense

that the latter one factors through the former one. To be more precise, consider the two embeddings
of groups Aut0(B) ↩→ Aut(V × B) and Aut(V × B/X) ↩→ Aut(V × B) and let G be the intersection
of their images. Then B/G is again an abelian variety and the natural map V × B/G → X is étale,
hence a smaller split covering. This motivates the following definition:
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Definition 3.1. Let X be a compact Kähler manifold with c1(X) = 0. A split covering V ×B → X

is called minimal if Aut(V × B/X) does not contain any translation of B, i.e. the group G defined
above is trivial.

Now a more interesting question is: How many minimal split coverings does X admit? The result
is due to Beauville, which also explains why the name “minimal”:

Theorem 3.2 ([Bea83, Proposition 3]). There exists a unique minimal split covering V0 × B0 → X

(up to a non-unique isomorphism), and any split covering V
′ × B

′ → X factors through the minimal
one:

V
′ ×B

′
V0 ×B0

X.

∃

In positive characteristics, we can define similarly the notion of a split covering:

Definition 3.3. Let X be a globally F -split smooth projective variety with KX ∼ 0 over an alge-
braically closed field of characteristic p > 0. A Beauville-Bogomolov decomposition V ×B → Z → X

(c.f. Theorem 2.3) is called split if

(1) V is simply connected, i.e. V has no non-trivial finite étale covers, and µp-simply connected,
i.e. V admits no non-trivial µpj -torsors over it for any j > 0,

(2) the infinitesimal part V ×B → Z is a
%!q(X)

i=1 µ
p
ji -torsor with a diagonal action, such that the

action on V is faithful and the action on B is free.

It is called minimal if for any other split covering V
′ ×B

′ → Z
′ → X, there is a factorization:

V
′ ×B

′
V ×B

Z
′

Z

X.

∃

∃

.

In this section, we prove the corresponding existing result of a minimal split covering in positive
characteristics:

Theorem 3.4. Let X be a globally F -split smooth projective variety with KX ∼ 0 over an algebraically
closed field of characteristic p > 0. Assume that there exists a split covering V × B → Z → X, then
a minimal split covering of X exists and is unique (up to a non-unique isomorphism).

However, here it is in general not required that in a Beauville-Bogomolov decomposition V ×B →
Z → X, the fundamental group of V is trivial, nor that the Nori fundamental group scheme of V
has no µp-quotients. So it is possible that there exists a variety admitting no split covering at all.
Nevertheless, in dimension 3, we have an explicit description on the possible V that may occur, so we
can prove the following:

Corollary 3.5. Assume that X is 3-dimensional and of Type A or Type K (c.f. Section 2.1), then X

admits a unique minimal split covering.

Proof. By Theorem 3.4, it suffices to show that X admits a split covering. For Type A the assertion
is trivial. For Type K, we know that there is a decomposition V ×B → Z → X such that V is either
a K3 surface or non-classical Enriques surface with at most canonical singularities (c.f. Section 2.1),
and B is an elliptic curve.

Assume that V is a K3 surface, and let ε : &V → V be its minimal resolution. Now &V is a smooth

K3 surface, whose Picard group Pic(&V ) is free of torsion (see [Huy16, Proposition 1.2.4]), and Pic(V )
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can be embedded into Pic(&V ) via pullback ε∗, hence is torsion-free too. The Kummer sequence

0 µpj Gm Gm 0
(−)p

j

gives a half short exact sequence

0 H
1
fppf(V, µpj ) Pic(V ) Pic(V ),

p
j ·

showing that V has no non-trivial µpj -torsors. Next, assume that µ : V ′ → V is a finite étale cover
from an irreducible variety V

′. We note that OV is the dualizing sheaf on V , hence OV ′ is the dualizing
sheaf on V

′. This implies in particular h0(V ′
,OV ′) = h

2(V ′
,OV ′) = 1. Then we have

h
1(V ′

,OV ′) = 2− χ(V ′
,O′

V ) = 2− deg(µ) · χ(V,OV ) = 2− 2 deg(µ),

implying that deg(µ) = 1, hence V is simply connected, and V ×B → Z → X is a split covering.
Now we assume that V is a non-classical Enriques surface. Note that this case occurs only in

characteristic 2.
Claim: The universal cover of V is a K3 surface with at most canonical singularities, which is of degree
2 over V .
Proof of claim: Let &V → V be the minimal resolution of V , which is a regular non-classical Enriques

surface with an étale Z/2Z-cover by a K3 surface. We denote the étale K3 cover of &V by 0W . Let E be

the exceptional divisor of the resolution &V → V , which is a union of rational (−2)-curves. Therefore,

the preimage of E in 0W is just two copies of E, as rational curves has no non-trivial étale covers. We
may then contract E ∐ E to get a K3 surface W with at most canonical singularities, and there is a
map W → V , and we claim it is étale.

E ∐ E 0W W

E &V V

Indeed, the relative differential ΩW/V is only supported on the singularities of V , and on the singular
points W → V is also étale, as it is just the contraction of E ∐ E mapping to the contraction of E.
Since W is simply connected by what we have shown before, W is the universal cover of V . "

Let W be the degree two universal K3 cover of V , and consider W × B → X. We get naturally a
factorization W ×B → Z

′ → X such that W ×B → Z
′ is purely inseparable and Z

′ → X is separable,
and we get a diagram as follows:

W ×B V ×B

Z
′

Z

X.

π

u
′ u

τ

v
′ v

We claim then

(1) the upper square is Cartesian, and
(2) v

′ is étale,
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from which one can deduce that W ×B → Z
′ → X is a split covering. Let T denote the fibre product

(V ×B)×Z Z
′, then we have induced morphisms τ ′ : T → V ×B and w : W ×B → T as below:

W ×B

T V ×B

Z
′

Z

w
π

u
′ τ ′

u

τ

First we show that deg(τ) = deg(π) = 2. Pick z ∈ Z(k) a general closed point, then its set theoret-
ical preimage u

−1(z) ⊂ V × B(k) consists also of a single point, as u is purely inseparable. Hence
|π−1(u−1(z))| = deg(π) = 2, as π is étale. But then 2 = deg(π) = |π−1(u−1(z))| = |u′−1(τ−1(z))| =
|τ−1(z)| = deg(τ), where the latter equality is again because u

′ is purely inseparable. However, we
have also deg(τ ′) = deg(τ) = 2 as τ ′ is a pullback. This implies that deg(w) = 1 and hence T ∼= W×B,
proving the first claim. The second claim follows then directly from the fact that τ is étale by fpqc
descent. So W ×B → Z

′ → X is a split covering, as we have shown before that W is simply connected
and µp-simply connected. In both cases of V we have successfully constructed a split covering, and
we can deduce the existence of a minimal split covering using Theorem 3.4. □
Remark 3.6. In the proof of Type K case above, we actually use no assumptions on the dimension of
B. So this proof can be directly generalized to all varieties X satisfying the assumptions in Theorem
2.3, such that &q(X) = dimX − 2. This improves in particular the result in [PZ20, Lemma 12.2].

To prove Theorem 3.4, we need the following lemma.

Lemma 3.7. Let V be a variety with trivial Albanese and let B be an abelian variety. The natural
morphism AutV ×AutB → AutV×B of group schemes is an isomorphism.

Proof. For a k-scheme S, the relative Albanese of (V ×B)S over S is simply the projection onto BS , see
[Gro62, Théorème 3.3]. For each σ ∈ AutV×B(S), one can find τ ∈ AutB(S) such that the following
diagram commutes:

(V ×B)S (V ×B)S

BS BS .

σ

τ

This implies then σ is of the form (a, b) '→ (ξb(a), τ(b)) for (a, b) ∈ V (S) × B(S). Note that the
assignment

B(S) → Aut(VS),

b '→ ξbξ
−1
0

is an action of B on V , which has to be trivial (c.f. [Bri18, Corollary 2.19]), and therefore σ must be
of the form (ξ, τ) for ξ ∈ AutV (S) and τ ∈ AutB(S). □
Remark 3.8. Lemma 3.7 shows in particular that the infinitesimal torsor V ×B → Z is always induced
by a diagonal action.

Proof of Theorem 3.4. Suppose we are given a split covering V × B → Z → X. By Lemma 3.7, we
have an isomorphism AutV×B

∼= AutV ×AutB. Let G be the intersection of 1×Aut0
B
and Aut(V×B)/X

in Aut(V×B), i.e. the group scheme of translations of B over X. We can show that G is finite étale:
Finiteness follows directly from that V × B → X is finite, and étaleness follows from that the action
of the infinitesimal part of Aut(V×B)/X , which is nothing but Aut(V×B)/Z , is faithful on V . Since
G can be regarded as a subgroup of Aut(V×B/X), and Z is a quotient of V × B by the infinitesimal
part of Aut(V×B)/X , which is a normal subgroup scheme, it follows that the action of G on V × B

can be descended to an action on Z, Consider then V0 := V,B0 := B/G,Z0 := Z/G, and the natural
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morphism V0 × B0 → Z0 → X. We claim that this is a split covering. Indeed, consider the following
diagram

V ×B V0 ×B0

Z Z0

X,

π

u
′ u

τ

v
′ v

and we shall prove

(1) u is an infinitesimal torsor under the same group for the torsor u′, and
(2) v is étale.

The first claim follows from the fact that the upper square is Cartesian, which can be proved using
the same degree argument in Corollary 3.5. In particular, the morphism τ is étale by fpqc descent on
π. We may then use [Sta25, Tag 02K6] to conclude that v is étale.

We then claim that the split covering V0 × B0 → Z0 → X is minimal. Let V1 × B1 → Z1 → X be
another split covering. Let Z2 be a connected scheme finite étale over Z0 ×X Z1 such that the tower

Z2

Z0 Z1

X

is Galois, i.e. Z2 → X is a torsor for a finite étale group scheme, and Z0 and Z1 is induced by quotients
of subgroups. For example, we can take Z2 being the Galois closure of a connected component of
Z0 ×X Z1 in the Galois category Fét(X) of schemes finite étale over X. We then build a diagram

Y2 Y1 V1 ×B1

Y0 Z2 Z1

V0 ×B0 Z0 X

┘ ┘

┘

such that the indicated three squares are Cartesian. The scheme Y0 is therefore an AutZ2/Z0
-torsor

over V0 × B0. By Theorem 2.17, Y0 must be of the form V
′
0 × B

′
0 ,where V

′
0 (resp. B

′
0) is an étale

torsor over V0 (resp. B0). By the simply connected assumption on V0 in a split covering, V ′
0 is a trivial

torsor over V0. By replacing V
′
0 and B

′
0 with one of its connected components, we may assume that

Y0 is integral and of the form V0 × B
′
0 for B

′
0 an abelian variety over B0. Similarly, we may assume

that Y1 ∼= V1 ×B
′
1 for B′

1 an abelian variety over B1. Now the diagram looks like

Y2 V1 ×B
′
1 V1 ×B1

V0 ×B
′
0 Z2 Z1

V0 ×B0 Z0 X.

┘

Again by Theorem 2.17 and the assumption that V0 is free of µpj -torsors, Y2 must be of the form
V

′′
0 × B

′′
0 , where V

′′
0 is a trivial infinitesimal torsor over V0 and B

′′
0 an infinitesimal torsor over B

′
0.
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Similarly, Y2 ∼= V
′′
1 ×B

′′
1 with the parallel properties as above. By replacing Y2 with its reduction, we

may assume Y2
∼= V0 × B

′′
0 , where B

′′
0 is an abelian variety over B

′
0, and Y2

∼= V1 × B
′′
1 , where B

′′
1 is

an abelian variety over B
′
1. In particular, V0

∼= V1 and B
′′
0
∼= B

′′
1 by Lemma 3.7. Now the diagram

becomes
V0 ×B

′′
0 V1 ×B1

Z2 Z1

V0 ×B0 Z0 X.

The morphism V0 × B
′′
0 → V0 × B0 is given by the quotient of the group scheme of translations

AutB′′
0 /B0

. By the construction of V0 × B0, we know that AutB′′
0 /B0

= Aut(V0×B
′′
0 )/X

∩Aut0
B

′′
0
is the

group scheme of all translations of B′′
0 over X. Here, we use again the identification AutV0×B

′′
0

∼=
AutV0 ×AutB′′

0
by Lemma 3.7, and identify Aut(V0×B

′′
0 )/X

and AutB′′
0

as subgroups in AutV0×B
′′
0
.

Similarly, V0 × B
′′
0 → V1 × B1 is given by the quotient of the group scheme AutB′′

0 /B1
, which is

a subgroup of Aut(V0×B
′′
0 )/X

∩Aut0
B

′′
0
. The inclusion AutB′′

0 /B1
⊂ Aut(V0×B

′′
0 )/X

∩Aut0
B

′′
0
induces a

factorization V1×B1 → V0×B0 → X, and the factorization Z1 → Z0 → X is shown simply by taking
the separable parts of V1 ×B1 → X and V0 ×B0 → X. □
Remark 3.9. We note that the factorization V1×B1 → V0×B0 is the quotient by a group of translations
of B1 over X, as V0

∼= V1. The infinitesimal part of a split covering is assumed to contain no translation
of B1. As a result, we derive that V0×B0 → Z0 and V1×B1 → Z1 are torsors under a same infinitesimal

group scheme
%!q(X)

i=1 µ
p
ji , and the ji might be invariants of X of interest.

4. Weakly ordinary Calabi-Yau threefolds of Type A

Let X be a globally F -split smooth projective variety over a perfect field k with KX ∼ 0 and
q̂(X) = dimX. By Theorem 2.3, there is a finite cover B → X from an abelian variety B. As
discussed in the case-by-case study in Section 2.1, we can get the following:

Lemma 4.1. Let X be of the same setting as above. Then X admits a finite étale cover from an
abelian variety.

Proof. Let B → Z → X be a Beauville-Bogomolov decomposition of X, where

(1) B is an abelian variety,

(2) B → Z is a
%dimX

i=1 µ
p
ji -torsor, and

(3) Z → X is étale.

Let G ⊂ AutB/X be the subgroup scheme consisting of all translations of B over X, then B/G → X

is a smaller abelian variety cover through which B → X factors. As any infinitesimal group action on
an abelian variety is a translation, AutB/Z is a subgroup of G, so B/G → X is étale. □

Similarly to a minimal split covering in Definition 3.3, we call a cover B → X minimal if AutB/X

does not contain any translation of B, but here we do not require that k is algebraically closed.
We now confine ourselves to weakly ordinary Calabi-Yau threefolds of Type A.

Definition 4.2. We say a variety X is Calabi-Yau if X is a smooth projective variety with trivial
canonical bundle, and H

1(X,OX) = 0. We say that a weakly ordinary Calabi-Yau variety X is
of Type A if the base field k is perfect, and X admits a finite cover from an abelian variety, not
necessarily assuming that k is algebraically closed.

By Lemma 4.1, to classify all weakly ordinary Calabi-Yau threefolds of Type A, it would suffice to
classify all the possible finite group actions G ↷ B on abelian threefolds such that

(1) g is fixed point free for all g ∈ G,
(2) G contains no non-zero translations,
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(3) H
0(B,ωB)

G = k,
(4) H

1(B,OB)
G = 0.

Definition 4.3. Following the notations in [OS01], we call a group G a C.Y. group of Type A
(resp. a pre-C.Y. group of Type A), if it admits an action on an ordinary abelian threefold B

satisfying the conditions (1) - (4) (resp. the conditions (1) - (3)) listed above, and the corresponding
abelian threefold B is called a target threefold.

Since we are discussing only Type A Calabi-Yau threefolds in this section, we will abbreviate a
(pre-)C.Y. group of Type A to a (pre-)C.Y. group throughout this section, as long as no potential
confusion exists.

Remark 4.4. We remark here that in positive characteristics, the condition (4) does not always imply
on the quotient X = B/G, we have H

1(X,OX) = 0, as G might fail to be linearly reductive when |G|
is divisible by p. Nevertheless, we have still the injection H

1(B,OB)
G ↩→ H

1(X,OX) by Proposition
2.38, so condition (4) is essential for B/G being Calabi-Yau. We will see later that the possible groups
satisfying condition (1) - (4) have only prime factor 2 in the order, hence are linearly reductive when
p > 2.

For a group variety X, as the case in differential geometry for Lie groups, the tangent space T0X at the
identity point 0 ∈ X has a Lie algebra structure, and can be identified as H0(X,TX), the global vector
fields of X. Over the complex numbers, any abelian variety B is a complex torus, and is isomorphic
to its Lie algebra modulo a lattice H

0(B, TB)/Γ. Suppose we are given a group action G ↷ B on the
torus, then for each g ∈ G, the corresponding automorphism g : B → B can be decomposed into t◦g0,
where t is a translation and g0 is a homomorphism of abelian varieties. The homomorphism g0 induces
then a Lie algebra endomorphism T0B → T0B, and hence is naturally called the Lie part of g. In the
case of positive characteristics, it is in general not true that an abelian variety can be expressed in the
form of a torus. Nevertheless, the decomposition g = t◦g0 into a translation and a homomorphism still
exists, and g0 also acts on the Lie algebra T0B. For more naturality in algebra, we consider the action
of g0 on H

1(B,OB) via pullback, which is the same as the action of g on H
1(B,OB) via pullback,

instead of the action of g0 on T0B. The cost is that the induced representation of G on H
1(B,OB)

is a right representation. So to keep the notations consistent to conventions in representation theory,
we take the dual H1(B,OB)

∨ and consider the left representation of G on it.

Definition 4.5. The induced representation G ↷ H
1(B,OB)

∨ is called the Lie representation of
G.

In this section, we aim to prove

Theorem 4.6. Let k be a perfect field of characteristic p > 2. Let X be a weakly ordinary Calabi-Yau
threefold of Type A over k, and let B → X be its minimal cover. Then X = B/G for a C.Y. group G

of Type A, and the pair (B,G) is one of the following two cases:

(1) B ∼= (E1 × E2 × E3)/Λ, where Ei are ordinary elliptic curves and Λ is a finite subgroup of
E1 × E2 × E3, G = 〈a|a2 = 1〉 ⊕ 〈b|b2 = 1〉 ∼= C

2
2 , and its Lie representation is

a '→

!

"
1 0 0
0 −1 0
0 0 −1

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$

with respect to a basis of H1(B,OB)
∨ given by the product E1 × E2 × E3.

(2) B ∼= (E1×E2×E2)/Λ, where E1 and E2 are ordinary elliptic curves and Λ is a finite subgroup
of E1 × E2 × E2, G = 〈a, b|a4 = b

2 = abab = 1〉 ∼= D8, and its Lie representation is

a '→

!

"
1 0 0
0 0 −1
0 1 0

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$

with respect to a basis of H1(B,OB)
∨ given by the product E1 × E2 × E2.
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Moreover, both cases indeed exist.

Remark 4.7. If f : B
′ → B is an isogeny, then the pullback on the first sheaf cohomology f

∗ :
H

1(B,OB) → H
1(B′

,OB′) is an isomorphism. In the settings of Theorem 4.6, the domain B
′ ∼

E1 × E2 × E3 is isogenous to a product of elliptic curves. By Künneth formula, H
1(B1,OB1)

∼='3
i=1H

1(Ei,OEi). Since H
1(Ei,OEi) is one-dimensional, this gives a basis of H1(B,OB), unique

up to scalars in each basis vector. We also remark that in case (2), the matrix form of the Lie
representation will be eventually different if one scalars the two basis vectors given by E2 by different
coefficients. In the proof, we will construct explicitly an isomorphism between the two E2 components
via the D8 action on B, and the two basis vectors are assumed to be chosen to be compatible along
the isomorphism.

By a theorem of canonical lifts to characteristic 0 ([MS87, Appendix Theorem 1]), it is immediate
that the result in Theorem 4.6 must agree with the parallel result over C proved in [OS01]. We will
prove the result through a purely algebraic approach. We start by several simple observations.

Lemma 4.8. If G is a pre-C.Y. group, then so is any subgroup of G. Equivalently, if G contains a
non-pre-C.Y. group, then G is not a pre-C.Y. group.

Proof. It follows directly from Definition 4.3. □
Lemma 4.9. If B is a target abelian threefold, then B is ordinary.

Proof. The quotient B/G is globally F -split by assumption, and we can use [PZ20, Lemma 11.1] to
deduce that B is globally F -split as well. By Lemma 2.6, B is weakly ordinary. Then by Proposiiton
2.36, B is ordinary. □

4.1. Crystalline representation of pre-C.Y. groups. Let G be a group acting on an abelian
variety B. Given any g ∈ G and the corresponding automorphism g : B → B, the dual of the pullback
on the first crystalline cohomology g

∗∨ : H1(B/K)∨ → H
1(B/K)∨ gives a left representation of G. We

will eventually use these representations to restrict the possible orders of a C.Y. group. Nevertheless,
most of the results in this subsection can be applied to finite group actions on (possibly non-ordinary)
abelian varieties of arbitrary dimensions.

Remark 4.10. We will deal with many automorphisms of abelian varieties in this section. To avoid
confusion, we mean by an “endomorphism” (resp. an “automorphism”) of B a morphism (resp.
an isomorphism) of schemes B → B, not necessarily fixing the identity point 0B ∈ B. And by a
“homomorphism” from B1 to B2, we mean a morphism of group schemes B1 → B2, that is, it sends
the identity point 0B1 to the identity point 0B2 . The set of automorphisms of B is denoted Aut(B),
and the set of homomorphisms from B1 to B2 is denoted Hom(B1, B2). In particular, Hom(B,B) is
the set of endomorphisms of B which fix the identity point 0B.

To start with, we show that for a pre-C.Y. group G, the induced representation on crystalline
cohomology is faithful.

Lemma 4.11. Let B1, B2 be abelian varieties, then the natural map

Hom(B1, B2) → HomF−crystal

,
H

1(B1/W )∨, H1(B2/W )∨
- ∼= HomF−crystal

,
H

1(B2/W ), H1(B1/W )
-

is injective.

Proof. We have the natural identification H
1(B/W ) ∼= D(B[p∞]) by Proposition 2.31. By [CCO14,

Proposition 1.2.5.1], the natural map Hom(B1, B2) → HomZp(B1[p
∞], B2[p

∞]) is injective. We have
then natural isomorphisms

HomZp(B1[p
∞], B2[p

∞]) ∼= HomD(D(B2[p
∞]),D(B1[p

∞])) ∼= HomF−crystal

,
H

1(B2/W ), H1(B1/W )
-

where the first isomorphism is due to that the Dieudonné functor is a contravariant equivalence
(c.f. [Dem06, p. 71, Theorem]), and the second isomorphism is from Proposition 2.31. The lemma
follows. □
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Proposition 4.12. If a finite group G acts on an abelian variety B and contains no translation, then
the crystalline representation G ↷ H

1(B/K)∨ is faithful.

Proof. Assume that there is g ∈ G whose pullback action on H
1(B/K) is trivial. Write g = t ◦ g0

where t is a translation and g0 ∈ Hom(B,B) is a homomorphism of abelian varieties. Since the action
of g0 on H

1(B/K) is trivial, we obtain g0 is the identity homomorphism by Lemma 4.11. So g = t is
a translation, contradiction. □

Given any element g ∈ G of finite order, the induced action g
∗ on H

1(B/K) is diagonalizable by
passing to an algebraic closure, by elementary representation theory. Our next task is to study the
eigenvalues of g∗.

Proposition 4.13. Let g : B → B be an automorphism of an abelian variety B of finite order, and let
fg be the characteristic polynomial of the induced action g

∗ on H
1(B/K). Denote d = dimB. Assume

that the fixed point scheme B〈g〉 is finite, then lengthkB
〈g〉 = fg(1). In particular, if furthermore Fix(g)

is reduced, then |Fix(g)| = fg(1).

Proof. The action of g∗ on H
1(B/K) admits a diagonalization g

∗ = diag(λ1, . . . ,λ2d) over K, where
q = dimB. By the natural isomorphism H

∗(B/K) ∼=
/∗

H
1(B/K) (c.f. Proposition 2.30), the

eigenvalues of the action g
∗ on H

j(B/K) are just
%

i∈I λi, for all I ⊂ {1, . . . , 2n}, |I| = j. Now by
Lefschetz fixed point formula,

lengthkB
〈g〉 =

2d+

j=0

(−1)jTr(g∗|Hj(B/K)) =

2d+

j=0

(−1)j

!

11"
+

I⊂{1,...,2n}
|I|=j

2

i∈I
λi

#

33$ =

2d2

i=1

(1− λi) = fg(1).

A proof of the Leftschetz fixed point formula for crystalline cohomology can be found in [Ber74,
Théoème VII.3.1.6]. □
Proposition 4.14. Let g0 ∈ Hom(B,B) be a homomorphism of an abelian variety B to itself, and
let g∗0 be the induced endomorphism on H

1(B/K). We have an equality

deg(g0) = det(g∗0).

In particular, if we let ma denote the multiplication by a on B, then the characteristic polynomial
fg∗0

(T ) is equal to deg(mT − g0), and has rational coefficients.

Proof. The proof of [Mum74, Theorem 4, p. 180] still applies when we replace TlB with D(B[p∞])
and Ql with Qp. Then use the natural identification H

1(B/K) ∼= D(B[p∞]), c.f. Proposition 2.31. □
Proposition 4.15. Let d = dimB and assume that B is ordinary. Consider the decomposition
H

1(B/K) ∼= (H1(B,WOB)⊗W K)⊕ (H0(B,WΩ1
B
)⊗W K) given by Theorem 2.28. If the eigenvalues

of g∗ on H
1(B,WOB)⊗W K are λ1,λ2, . . . ,λd, counted with multiplicities, then the eigenvalues of g∗

on H
0(B,WΩ1

B
)⊗W K are of the form λ−1

1 ,λ−1
2 , . . . ,λ−1

d
.

Proof. We note first that the image of c1 : Pic(B) → H
2(B/K) lies in the slope 1 part of H2(B/K),

as F
∗
D = pD for any divisor D. The F -isocrystal H1(B,WOB) ⊗W K is purely of slope 0 and

H
0(B,WΩ1

B
) ⊗W K is purely of slope 1 by Propposition 2.36, so by the identification H

2(B/K) ∼=/2
H

1(B/K) by Proposition 2.30, the image of c1 is in (H1(B,WOB)⊗W K)∧ (H0(B,WΩ1
B
)⊗W K).

Let L be an ample line bundle on B/〈g〉, and let π : B → B/〈g〉 denote the natural projection, then
π∗L is a g-invariant ample line bundle on B. We can write c1(π

∗L) =
4

ai(vi∧wi) for vi an eigenbasis
of H1(B,WOB)⊗W K corresponding to λi, and wi ∈ H

0(B,WΩ1
B
)⊗W K. Then vi ∧ wi are linearly

independent as vi are linearly independent. Since c1(π
∗L) is g-invariant, wi must be eigenvectors

corresponding to the eigenvalues λ−1
i

. Moreover, wi span H
0(B,WΩ1

B
) ⊗W K as c1(π

∗L)d ∕= 0 in

H
2d(B/K). Therefore, wi form an eigenbasis of H0(B,WΩ1

B
)⊗W K. □

Corollary 4.16. If B is ordinary, and g is of finite order and fixed point free, then the eigenvalues
of g acting on H

1(B/K) are of the form 1, 1,λ2,λ
−1
2 , . . . ,λd,λ

−1
d

.
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Proof. By Proposition 4.13, 1 is an eigenvalue of g∗, then use Proposition 4.15. □

Proposition 4.17. If B is ordinary and g is of finite order, then the action g
∗ is identity on H

0(B,ωB)
if and only if the determinant of the action of g∗ on H

1(B,WOB) is 1.

Proof. If the determinant of g∗ is 1 on H
1(B,WOB)⊗W K, then by Lemma 2.37, the action g

∗ on the
one-dimensional space H

d(B,WOB) ⊗W K is the identity, where d = dimB. Lemma 2.33 gives an
injection H

d(B,WOB)/V H
d(B,WOB) ↩→ H

d(B,OB), which is an isomorphism here by a comparison
on dimensions. Therefore, the action g

∗ onH
d(B,OB) is identity, and so is g∗ onH

0(B,ωB) by duality.
Conversely we assume that the action g

∗ is identity on H
0(B,ωB), then the action is also identity on

H
d(B,OB). The action g

∗ on H
d(B,WOB) is then multiplication by ζ, an ord(g)-th root of unity in

W (k). The residue of ζ in k is 1, due to the isomorphism H
d(B,WOB)/V H

d(B,WOB) ∼= H
d(B,OB).

We need the following claim:
Claim: Assume p > 2. The only p

s-th root of unity in W (k) is 1.
Proof of claim: By induction it suffices to check the case s = 1. Assume x = (1, x2, x3, . . . ) is another
p-th root of unity. Write x = 1+p

r · y such that y ∕= 0 is not p-divisible. Then 1 = x
p = (1+p

r · y)p =
1+ p

r+1
y+ p

2r+1 · f(y) for some polynomial f , assuming p > 2. Hence y = p
r · f(y) and is p-divisible,

contradicting to our assumption, so y = 0. "
Write ord(g) = p

r · n for n non-divisible by p. By the claim, we see ζn = 1. So ζ is an n-th root of
unity in W (k) whose residue is 1, then ζ = 1 by Hensel’s lemma. By Lemma 2.37, the determinant of
g
∗ on H

1(B,WOB)⊗W K is precisely ζ = 1, proving the claim. □

Due to Proposition 4.15, we have also

Corollary 4.18. If B is ordinary and g is of finite order, then the action g
∗ is identity on H

0(B,ωB)
if and only if the determinant of the action of g∗ on H

0(B,WΩ1
B
) is 1.

Proposition 4.19. Let B be an ordinary abelian threefold with a 〈g〉-action. If g is of finite or-
der n and the 〈g〉-action is pre-C.Y., then the eigenvalues of g

∗ ∈ GL(H1(B/K)) are of the form
1, 1, ζn, ζ

−1
n , ζn, ζ

−1
n , where ζn is a primitive n-th root of unity in K.

Proof. By Corollary 4.16 and that g is of order n, it follows that the eigenvalues are of the form
1, 1, ζu, ζ

−1
u , ζv, ζ

−1
v , for integers u and v such that lcm(u, v) = n. Consider the three eigenvalues on

H
1(B,WOB), one has four possibilities up to replacing the primitive roots of unitiy with another one:

(1) 1, ζu, ζv: By Proposition 4.17, it follows that ζv = ζ−1
u and the proposition is readily verified.

(2) 1, 1, ζu: By Proposition 4.17, we must have u = 1. Then by Proposition 4.15, all the eigenvalues
are 1.

(3) 1, ζu, ζ
−1
u : By Proposition 4.15, we get ζv = ζu or ζv = ζ−1

u .
(4) ζu, ζ

−1
u , ζv: By Proposition 4.17, we get ζv = 1 and reduce this case to case (3) above.

□

In particular, the proof shows also

Corollary 4.20. The eigenvalues of g∗ on H
1(B,WOB) ⊗W K (resp. H

0(B,WΩ1
B
) ⊗W K) are of

the form 1, ζn, ζ
−1
n .

Lemma 4.21. Preserving the settings above, the characteristic polynomial fg∗,H0,1 of the g
∗-action

on H
1(B,WOB)⊗W K has rational coefficients.

Proof. Let fg∗ be the characteristic polynomial of g∗ on H
1(B/K), then fg∗ = f

2
g∗,H0,1 by Corollary

4.20. By Proposition 4.14, fg∗ has rational coefficients. So it suffices to show that if f = h
2, and h

is monic and has rational coefficients, then h has rational coefficients as well. Write h =
4

l

i=0 aiT
i,

and assume that j is the largest index such that aj is not rational. Since g is monic, j < l. Then the

coefficient of T l+j in f is
4

l

i=j
aial+j−i =

4
l

i=j+1 aial+j−i + 2aj , which is a sum of a rational and an
irrational number. This yields a contradiction. □
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4.2. Classification of (pre-)C.Y. groups. Using the result on representations of a cyclic pre-C.Y.
group on the first crystalline cohomology in the last section, we can now determine the precise possible
orders of elements in a pre-C.Y. group, and classify all (pre-)C.Y. groups. Many ideas in the whole
classification are from [OS01], but their proofs rely pretty much on complex geometry settings, and
we reformulate the proofs using purely algebraic techniques.

Proposition 4.22. Let 〈g〉 be a cyclic pre-C.Y. group acting on a target threefold B. Then ord(g) ∈
{1, 2, 3, 4, 6}.
Proof. Combining Corollary 4.20 and Lemma 4.21, we see that a primitive ord(g)-th root of unity has
degree at most 2 over Q. □
Proposition 4.23. Let G be an abelian pre-C.Y. group, then G is isomorphic to either C2 × C2 or
Cn for n = 1, 2, 3, 4, 6.

Proof. Let B be a target threefold. Consider the representation of G on H
1(B,WOB)

∨ ⊗W K, which
is faithful by Corollary 4.20. There exists a basis under which the representation is diagonalized. We
know that up to isomorphism, G can be written as Cn1 × · · ·× Cnk

such that nj |nj+1. If G is cyclic,
then the result follows from Proposition 4.22. If G is not cyclic, pick the generators a of Cn1 and b

of Cn2 . Again by Corollary 4.20 the eigenvalues of a (resp. of b) are 1, ζn1 , ζ
−1
n1

(resp. 1, ζn2 , ζ
−1
n2

).
We have only two possibilities on the matrix forms of a and b up to an reordering of the basis and
replacing ζn2 by ζ−1

n2
:

(1) a = diag(1, ζn1 , ζ
−1
n1

), b = diag(1, ζn2 , ζ
−1
n2

): It follows that b generates a as n1|n2, a contradic-
tion.

(2) a = diag(1, ζn1 , ζ
−1
n1

), b = diag(ζn2 , 1, ζ
−1
n2

): Consider ab = diag(ζn2 , ζn1 , (ζn1ζn2)
−1). By Corol-

lary 4.20, we must have ζn2 = ζ−1
n1

. Then consider a
2
b = diag(ζ−1

n1
, ζ2n1

, ζ−1
n1

). Again by

Corollary 4.20, we must have ζ2n1
= 1 and n1 = n2 = 2. In this case, a = diag(1,−1,−1), b =

diag(−1, 1,−1). If there is a third independent generator c of Cn3 , one can show similarly that
c = diag(−1,−1, 1), but then c = ab, so this is impossible and we have already G ∼= C2 × C2.

□
Recall that by definition, a C.Y. group is just a pre-C.Y. group G whose action on H

1(B,OB) does
not fix any non-zero vector. The following proposition is then immediate.

Proposition 4.24. Assume p > 2. The pre-C.Y. group C2 × C2 is C.Y. for any target threefold B,
and the pre-C.Y. group Cn is never C.Y. for any target threefold

Proof. The injection H
1(B,WOB)/V H

1(B,WOB) ↩→ H
1(B,OB) given by Lemma 2.33 is natural

and hence equivariant for any group action. By a comparison on ranks, the injection is in fact an
isomorphism. We can check then directly that H1(B,OB)

C2×C2 = 0 (resp. H
1(B,OB)

Cn ∕= 0) using
the explicit description of the action on H

1(B,WOB)
∨ in the proof of Proposition 4.23. □

In order to pass to non-abelian C.Y. groups, we recall a theorem by Hall on finite groups.

Theorem 4.25 (Hall). Let q be a prime number, and let G be a q-group of order q
n. If H is a

maximal abelian subgroup of G and has order q
h, then n ≤ h(h+1)

2 .

Proof. See e.g. [Hup67, Satz III.7.3]. □
Corollary 4.26. Let G be a pre-C.Y. group, then ord(G) = 2a3b for 0 ≤ a ≤ 3, 0 ≤ b ≤ 1. In
particular, ord(G) ∈ {1, 2, 3, 4, 6, 8, 12, 24}.
Proof. By Lemma 4.8, any Sylow q-group is pre-C.Y., hence we can conclude with Proposition 4.23
and Theorem 4.25. □

Let B be a target threefold of G. Our next step is to study the three-dimensional representation of
G on H

1(B,WOB)
∨ ⊗W K via explicit classifications of irreducible representations of groups of small

orders. The assumption we have for a C.Y. group is that H1(B,OB)
G = (H1(B,OB)

∨)G = 0, but we
will mainly work on H

1(B,WOB)
∨
, (H1(B,WOB)

∨)⊗W K and (H1(B,WOB)
∨)⊗W K, so we need

the following lemmas on comparing the invariant subspaces of related representations:
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Lemma 4.27. Let R be a ring, M a free module over R, and let G ↷ M be an R-linear representation
of a finite group G. Given a flat R-algebra R

′, and consider the induced R
′-linear representation

G ↷ M ⊗R R
′
We have rankR M

G = rankR′(V ⊗R R
′)G.

Lemma 4.28. Let M be a free W -module of finite rank, and let G ↷ M be a W -linear represen-
tation of a finite group G. Then G descends to an action on M/VM , and we have rankW M

G ≤
dimW/VW (M/VM)G.

Proof. Choose a basis vi of MG. The vectors vi are not p-divisible in M , as if we have a wj such
that vj = p · wj , then wj is fixed by G as well, contradicting to the assumption that vi are a basis.
Therefore the quotient classes vi in M/VM are non-zero. We claim that they are linearly independent
in (M/VM)G. Assume that we have a relation

4
i
ai · vi = 0 in M/VM . Pick preimages ai of ai in

M , then
4

i
aivi ∈ VM = pM . Now

4
i
aivi is G-invariant, and p-divisible, and therefore 1

p

4
i
aivi is

also G-invariant. Since vi are a basis of MG, we can write 1
p

4
i
aivi =

4
bivi, but this means precisely

that ai = pbi and hence ai = 0. □

If G acts on an abelian variety B, then we have a left representation G
op ↷ H

1(B,OB). The
lemmas above shows inparticular that if H

1(B,OB)
G

op
= 0, then H

1(B,WOB)
G

op
= 0, hence

(H1(B,WOB)
∨)G = 0 as well, hence dim

K
(H1(B,WOB)

∨ ⊗W K)G = dimK(H1(B,WOB)
∨ ⊗W

K)G = rankW (H1(B,WOB)
∨)G = 0. Therefore

Lemma 4.29. If G is a C.Y. group acting on a target threefold B, then rankW (H1(B,WOB)
∨)G =

dimK(H1(B,WOB)
∨ ⊗W K)G = dim

K
(H1(B,WOB)

∨ ⊗W K)G = 0.

Moreover, we will frequently consider the invariant subscheme of an action on an abelian variety B,
in the following setting: Let g be a homomorphism g : B → B of finite order, that is, g has finite order
as an automorphism of B. Let n = ord(g). Consider the maximal abelian subvariety of Ker(g − Id),
denoted with E, or equivalently, E is the reduction of the identity component of Ker(g − Id).

Lemma 4.30. In the above setting, we have also E = Im(gn−1 + g
n−2 + · · ·+ g + Id).

Proof. Indeed, it is clear that Im(gn−1 + g
n−2 + · · · + g + Id) ⊂ E, and for the converse inclusion, it

suffices to check on k-rational points. Given α ∈ E(k), one can find α′ ∈ E(k) such that n · α′ = α,
and then g

n−1(α′) + g
n−2(α′) + · · ·+ g(α′) + α′ = n · α′ = α. □

The dual of pullback (gn−1 + g
n−2 + · · ·+ g + Id)∗∨ acts on the dual crystalline cohomology group

H
1(B/K)∨. The following lemma turns out to be helpful:

Lemma 4.31. In the above setting, we have dimE = 1
2 rank

,
(gn−1 + g

n−2 + · · ·+ g + Id)∗∨
-
, and

the natural embedding ι : E ↩→ B induces again a map ι∗∨ : H1(E/K)∨ → H
1(B/K)∨, which is

injective and whose image is precisely (H1(B/K)∨)〈g〉.

Proof. The homomorphism
4

n−1
i=0 g

i : B → B induces a morphism of p-divisible groups
54

n−1
i=0 g

i

6
[p∞] :

B[p∞] → B[p∞], hence also a map of Dieudonné modules
54

n−1
i=0 g

i

6∗
: D(B[p∞]) → D(B[p∞]), and

hence a map of dual crystalline cohomology
54

n−1
i=0 g

i

6∗∨
: H1(B/W )∨ → H

1(B/W )∨. All the three

functors used above are exact, and respects the Hom(B,B)-structure on the objects, hence we have

H
1(E/K)∨ = H

1

7
Im

7
n−1+

i=0

g
i

8
/K

8∨

= Im

!

"
7

n−1+

i=0

g
i

8∗∨#

$ = Im

7
n−1+

i=0

,
g
∗∨-i

8
⊂ H

1(B/K)∨.

Therefore, we have dimE = 1
2 rank

54
n−1
i=0 g

i

6∗∨
, showing the first claim. For the second claim, we

note first that E[p∞] → B[p∞] being injective implies D(B[p∞]) → D(E[p∞]) is surjective, as D is an
anti-equivalence between the category of p-divisible groups and the category of Dieudonné modules
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over W . Therefore by Proposition 2.31, the map ι∗ : H1(B/K) → H
1(E/K) is surjective, and hence

the dual ι∗∨ : H1(E/K)∨ → H
1(B/K)∨ is injective. Consider then the following diagram:

E B

E B

ι

mn
"n−1

i=0 g
i

ι

where mn is multiplication by n. The diagram is commutative since g acts as Id on E. The corre-
sponding diagram on the dual crystalline cohomology is

H
1(E/K)∨ H

1(B/K)∨

H
1(E/K)∨ H

1(B/K)∨,

ι∗∨

diag(n,...,n) (
"n−1

i=0 g
i)

∗∨

ι∗
∨

which shows that the image of ι∗∨ lies in the eigenspace of
54

n−1
i=0 g

i

6∗∨
of the eigenvalue n. Since

the eigenvalues of g∗∨ are n-th roots of unity, we see that
54

n−1
i=0 g

i

6∗∨
has only eigenvalues n or 0,

where the
54

n−1
i=0 g

i

6∗∨
-eigenspace of eigenvalue n is precisely the g∗∨-eigenspace of eigenvalue 1, and

the
54

n−1
i=0 g

i

6∗∨
-eigenspace of eigenvalue 0 is the direct sum of the g∗∨-eigenspaces of eigenvalues not

equal to 1. As dimE = 1
2 rank

54
n−1
i=0 g

i

6∗∨
, the dimension of H1(E/K)∨ agrees with the dimension

of the
54

n−1
i=0 g

i

6∗∨
-eigenspace of eigenvalue n, which is the same as the g

∗∨-invariant subspace, and

the claim is proved. □

We start by classifying (pre-)C.Y. groups of order ≤ 12. We can consider abelian subgroups of
all non-abelian groups of the orders mentioned in Corollary 4.26, a list of which can be found in
[CM84, Table 1]. By Lemma 4.8, subgroups of pre-C.Y. groups are again pre-C.Y., so we can exclude
many cases using Proposition 4.23, and obtain

Proposition 4.32. If G is a non-abelian pre-C.Y. group of order ≤ 12, then G is isomorphic to one
of the groups D6, D8, Q8, D12, Q12, A4.

The full character tables of the groups appearing in Proposition 4.32 can be found in [Led87], with
a navigation list on page 205. One can easily check that the characters correspond to the following
irreducible representations:

Proposition 4.33. Let ζn denote a primitive n-th root of unity. Up to equivalence, the complex
irreducible (left) representations of D2n, Q8, Q12 and A4 over are given as follows:

(D0) D2n = 〈a, b|an = b
2 = abab = 1〉 with n ≡ 0 (mod 2):

(1) ρ1,0 : a '→ 1, b '→ 1; ρ1,1 : a '→ 1, b '→ −1; ρ1,2 : a '→ −1, b '→ 1; ρ1,3 : a '→ −1, b '→ −1;

(2) ρ2,k : a '→
9
ζkn 0
0 ζ−k

n

:
, b '→

9
0 1
1 0

:
, for 1 ≤ k ≤ n

2 − 1.

(D1) D2n = 〈a, b|an = b
2 = abab = 1〉 with n ≡ 1 (mod 2):

(1) ρ1,0 : a '→ 1, b '→ 1; ρ1,1 : a '→ 1, b '→ −1;

(2) ρ2,k : a '→
9
ζkn 0
0 ζ−k

n

:
, b '→

9
0 1
1 0

:
, for 1 ≤ k ≤ n−1

2 .

(Q8) Q8 = 〈a, b|a4 = 1, a
2 = b

2
, b

−1
ab = a

−1〉:
(1) ρ1,0 : a '→ 1, b '→ 1; ρ1,1 : a '→ 1, b '→ −1; ρ1,2 : a '→ −1, b '→ 1; ρ1,3 : a '→ −1, b '→ −1;

(2) ρ2,0 : a '→
9
ζ4 0
0 ζ4

:
, b '→

9
0 ζ4
ζ4 0

:
.

(Q12) Q12 = 〈a, b|a6 = 1, a
3 = b

2
, b

−1
ab = a

−1〉:
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(1) ρ1,0 : a '→ 1, b '→ 1; ρ1,1 : a '→ 1, b '→ −1; ρ1,2 : a '→ −1, b '→ ζ4; ρ1,3 : a '→ −1, b '→
−ζ4;

(2) ρ2,0 : a '→
9
ζ6 0
0 ζ−1

6

:
, b '→

9
0 ζ4
ζ4 0

:
;

ρ2,1 : a '→
9
ζ3 0
0 ζ−1

3

:
, b '→

9
0 −1
−1 0

:
.

(A4) A4 = 〈a, b〉 ⊂ S4, where a = (123) and b = (12)(34):
(1) ρ1,0 : a '→ 1, b '→ 1; ρ1,1 : a '→ ζ3, b '→ 1; ρ1,2 : a '→ ζ−1

3 , b '→ 1.

(2) ρ3 : a '→

!

"
0 1 0
0 0 1
1 0 0

#

$ , b '→

!

"
1 0 0
0 −1 0
0 0 −1

#

$ .

We start by excluding the cases D6, D12 and A4.

Proposition 4.34. The groups D6 and D12 are not pre-C.Y. groups.

Proof. By Lemma 4.8, it suffices to check the statement forD6 sinceD12 hasD6 as a subgroup. Assume
that D6 = 〈a, b|a3 = b

2 = abab = 1〉 is pre-C.Y. and let B be a target threefold. We consider the left
representation ρ : D6 → GL(H1(B,WOB)

∨ ⊗W K), which is faithful by Proposition 4.12. As D6 is
non-abelian, the representation ρ does not split into three one-dimensional irreducible representations.
So ρ contains the subrepresentation ρ2,1 in Proposition 4.33. By Proposition 4.17, the image of ρ is in

SL(H1(B,WOB)
∨⊗W K), so the only possible decomposition is ρ ∼= ρ1,1⊕ ρ2,1. Pick a basis v1, v2, v3

of H1(B,WOB)
∨ ⊗W K under which ρ is of the form

a '→

!

"
1 0 0
0 ζ3 0
0 0 ζ−1

3

#

$ , b '→

!

"
−1 0 0
0 0 1
0 1 0

#

$ .

Denote the identity point of B with 0 and define α := a(0),β := b(0). We can decompose a =
tα ◦ a0, b = tβ ◦ b0, where tα and tβ are translations on B by α and β, and a0 and b0 are group
homomorphisms of B to itself. Define E := Im(a20+a0+Id), which is nothing but the reduction of the
identity component of Ker(a0 − Id) by Lemma 4.30. By Proposition 4.15, it follows that the action
of a0 on H

1(B/K)∨ ⊗K K can be written as diag(1, 1, ζ3, ζ
−1
3 , ζ3, ζ

−1
3 ). So by Lemma 4.31, E is an

elliptic curve, and H
1(E/K)∨ can be identified as the fixed subspace of H1(B/K)∨ under a

∗∨
0 . One

can then consider the diagram

E B

E B

ι

m−1 b0

ι

wherem−1 is just the involution on E, and the induced diagram on the dual first crystalline cohomology

H
1(E/K)∨ H

1(E/K)∨

H
1(B/K)∨ H

1(B/K)∨

m−1=diag(−1,−1)

τ∗∨=diag(1,1,0,0,0,0) τ∗∨=diag(1,1,0,0,0,0)

b
∗∨
0 =diag(−1,−1)⊕···

is commutative, hence b0 acts as multiplication by −1 on E, by Lemma 4.11. Let A := B/E be the
quotient abelian surface and let π := B → A denote the natural projection. The curve E and the
surface A are ordinary as B is isogenous to A× E. We claim the following:
Claim: The action of a and b on B descends to actions on the quotient A, i.e. for a, b ∈ Aut(B) there
exist a, b ∈ Aut(A) such that π ◦ a = a ◦ π and π ◦ b = b ◦ π. Moreover, a and b satisfy the relations of
a and b in D6, so they define a D6-action on A.
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Proof of claim: We construct first a.

B B

A = B/E A

a

π π

a

By the universal property of categorical quotients, the unique existence of a : S → S such that the
diagram above commutes is equivalent to that the composition π ◦ a is E-invariant. Let S be any
k-scheme, and consider S-rational points x ∈ B(S), y ∈ E(S). We have

π ◦ a(x+ y) = π ◦ tα ◦ a0(x+ y) (Decompose a = tα ◦ a0)
= π(a0(x) + a0(y) + α) (a0 is a group homomorphism)

= π(a0(x) + α+ y) (a0 is identity on E)

= π(a0(x) + α) (π is a group homomorphism, and y is in Kerπ = E)

= π ◦ a(x).

So π ◦ a is indeed invariant under translations by any elements in E. The argument for b is similar:

π ◦ b(x+ y) = π ◦ tβ ◦ b0(x+ y)

= π(b0(x) + b0(y) + β)

= π(b0(x) + β − y) (b0 is multiplication by −1 on E)

= π(b0(x) + β)

= π ◦ b(x).

The fact that a and b are subject to the same relations as a and b in D6 follows from the uniqueness
of the descent of Id on B, which is just Id on A. "

The short exact sequence of p-divisible groups

1 E[p∞] B[p∞] A[p∞] 1

induces a short exact sequence of Dieudonné modules

0 D(A[p∞]) D(B[p∞]) D(E[p∞]) 0

since the Dieudonné functor D is an equivalence by [Dem06, p. 71, Theorem]. By Proposition 2.31,
we see that the pullback π∗ : H

1(A/K) → H
1(B/K) is injective with cokernel H1(E/K). Since

H
1(A,WOA), H

1(B,WOB), H
1(E,WOE) are the slope 0 parts of the crystalline cohomology of the

three abelian varieties, the pullback π∗ : H1(A,WOA) → H
1(B,WOB) on Witt vector cohomology

is injective with cokernel H1(E,WOE). By taking duals and passing to an algebraic closure, we get
π∗∨ : H1(B,WOB)

∨ ⊗W K → H
1(A,WOA)

∨ ⊗W K is surjective, with kernel H1(E,WOE)
∨ ⊗W K.

Recall that we wrote v1, v2, v3 for a basis of H1(B,WOB)
∨ ⊗W K and v1 spans the eigenspace of

a0 with eigenvalue 1, which is noting but H
1(E,WOE)

∨ ⊗W K. Therefore H
1(A,WOA)

∨ ⊗W K is
spanned by v2 := π∗∨(v2) and v3 := π∗∨(v3). Decompose a = tα ◦ a0 and b = tβ ◦ b0 into a group

homomorphism a0 : A → A and a translation by α ∈ A. One can check that a0 (resp. b0) is indeed
the descent of a0 (resp. b0) to A and α = π(α) (resp. β = π(β)), so the notation does not lead to any
misunderstanding. Applying Lemma 4.11 to the diagram

B B

A A,

a0,b0

π π

a0,b0



ON SPLIT COVERINGS OF CALABI-YAU THREEFOLDS IN POSITIVE CHARACTERISTICS 29

we are able to show that under the basis v2, v3, the representation of D6 on H
1(A,WOA)

∨ ⊗W K can
be written as

a '→
9
ζ3 0
0 ζ−1

3

:
, b '→

9
0 1
1 0

:
.

By Proposition 4.15, the action of a on H
1(A/K) has eigenvalues ζ3, ζ

−1
3 , ζ3, ζ

−1
3 . In particular, by

Lemma 4.31, we see the fixed point scheme A
〈a〉 is finite, so we can apply the fixed point formula in

Proposition 4.13 and get lengthkA
〈a〉 = 9. Translating A

〈a〉 by −(a0)
−1(α) gives an isomorphism of

schemes A
〈a〉 ∼= Ker(a0 − Id). Therefore, the number of k-rational points

;;A〈a〉(k)
;; is either 1, 3 or

9, where the case
;;A〈a〉(k)

;; = 1 or 3 can only happen in characteristic 3. Since we have the relation

ab = b(a)−1, the action b on A permutes the points in A
〈a〉(k). As ord(b) = 2, there exists a point

s ∈ A
〈a〉(k) fixed by b. Set F = π−1(s), then b can be restricted to an automorphism of F , as b(s) = s.

Moreover, by our construction of E and F , the action of b on H
1(F/K) is of the form diag(−1,−1). By

Lemma 4.31 Proposition 4.13, b admits a fixed point on F . However, this contradicts our assumption
B

〈b〉 = ∅. □
Proposition 4.35. The group A4 is not a pre-C.Y. group.

Proof. LetB be a target threefold, and consider the left representation ρ : A4 → GL(H1(B,WOB)
∨⊗W

K). We may argue similarly as the beginning of the proof of Proposition 4.34, and see that the only
possible irreducible decomposition of ρ is ρ ∼= ρ3, following the notations in Proposition 4.33. Pick a
basis v1, v2, v3 ∈ H

1(B,WOB)
∨ ⊗W K such that the matrix forms of a = (123) and b = (12)(34) are

the same as in Proposition 4.33:

a '→

!

"
0 1 0
0 0 1
1 0 0

#

$ , b '→

!

"
1 0 0
0 −1 0
0 0 −1

#

$ .

We can also easily compute the matrix forms of the following elements:

a
2
ba '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$ , aba
2 '→

!

"
−1 0 0
0 −1 0
0 0 1

#

$ .

Let 0 be the identity point of B. Define α := a(0),β := b(0), then we have decompositions a =
tα ◦ a0 and b = tβ ◦ b0, where tα and tβ are translations on B by α and β, and a0 and b0 are
group homomorphisms of B to itself. Define E1 := Im(b0 + Id), E2 := Im(a20b0a0 + Id) and E3 :=
Im(a0b0a

2
0 + Id). By Lemma 4.30, we know that E1 (resp. E2, resp. E3) is also the reduction of the

identity component of Ker(b0−Id) (resp. Ker(a20b0a0−Id), resp. Ker(a0b0a
2
0−Id)). Moreover, a0 sends

E1 to E3, sends E3 to E2 and sends E2 to E1, so E1, E2, E3 are abstractly isomorphic to each other.
By Lemma 4.31 and Lemma 4.27, we have dimE1 =

1
2(H

1(B/K)∨)〈b〉 = 1
2(H

1(B/W )∨ ⊗W K)〈b〉 = 1.
So E1 is an elliptic curve and is fixed by b0. Since a0 permutes Ei, we see that E2 is an elliptic
curve fixed under the action a

2
0b0a0 and E3 is an elliptic curve fixed under the action of a0b0a

2
0. Let

ιi : Ei ↩→ B be the natural embeddings, then by Lemma 4.31, under a suitable choice of bases, the
dual of pullback ι∗

∨
i

: H1(Ei/K)∨ → H
1(B/K)∨ on dual crystalline cohomology can be written in

matrix form

ι∗1 =

!

111111"

1 0
0 1
0 0
0 0
0 0
0 0

#

333333$
, ι∗2 =

!

111111"

0 0
0 0
1 0
0 1
0 0
0 0

#

333333$
, ι∗3 =

!

111111"

0 0
0 0
0 0
0 0
1 0
0 1

#

333333$
.

Let us consider the morphism π : E1 × E2 × E3 → B, (a, b, c) '→ ι1(a) + ι1(b) + ι1(c). Identifying
H

1(E1 × E2 × E3/K)∨ ∼= H
1(E1/K)∨ ⊕ H

1(E2/K)∨ ⊕ H
1(E3/K)∨ using Künneth formula and

taking the same bases as above, the dual of pullback π∗∨ : H1(E1 × E2 × E3/K)∨ → H
1(B/K)∨

is just diag(1, 1, 1, 1, 1, 1) in matrix form. So by Proposition 2.30, the pullback π∗ : H6(B/K) →
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H
6(E1 ×E2 ×E3/K) on the top crystalline cohomology is identity, which shows that π is an isogeny.

Let Λ ⊂ E1 × E2 × E3 be the kernel of π. Pick α̃ := (α1,α2,α3) ∈ π−1(α), β̃ := (β1,β2,β3) ∈ π−1(β),
and define two automorphisms E1 × E2 × E3 → E1 × E2 × E3:

ã(x1, x2, x3) = (x2, x3, x1) + (α1,α2,α3), b̃(x1, x2, x3) = (x1,−x2,−x3) + (β1,β2,β3).

Claim: We have π ◦ ã = a ◦ π and π ◦ b̃ = b ◦ π.
Proof of claim: We show the case for a only, and the proof of b is identical. Define ã0 : E1×E2×E3 →
E1 × E2 × E3, (x1, x2, x3) '→ (x2, x3, x1). Consider the following diagram

E1 × E2 × E3 E1 × E2 × E3 E1 × E2 × E3

B B B.

ã0

π

tα̃

π π

a0 tα

The commutativity of the right square follows directly from the choice of α̃. For the commutativity
of the left square, we note that the dual of pullback action (ã0)

∗∨ on H
1(E1 × E2 × E3/K)∨ is

ã
∗∨
0 =

!

"
0 1 0
0 0 1
1 0 0

#

$. So the commutativity follows from Lemma 4.11. "

A direct computation shows that ã
3(x) = ã

2
0(α̃) + ã0(α̃) + α̃. Since a

3 = Id and therefore ã
3 is a

translation in Λ, we get ã20(α̃)+ã0(α̃)+α̃ ∈ Λ. If we write αΣ = α1+α2+α3, then a computation shows

that ã20(α̃) + ã0(α̃) + α̃ = (αΣ,αΣ,αΣ). Another computation shows b̃−1 ◦ t(αΣ,αΣ,αΣ) ◦ b̃(x1, x2, x3) =
(x1, x2, x3)+(αΣ,−αΣ,−αΣ). Since (αΣ,αΣ,αΣ) ∈ Λ and b

−1◦b = Id, we get also (αΣ,−αΣ,−αΣ) ∈ Λ
and hence (αΣ,αΣ,αΣ) + (αΣ,−αΣ,−αΣ) = (2αΣ, 0, 0) ∈ Λ. Then we may compute

ã
2(0,α2 + α3,α1 + α2 + 2α3) = ã(α1 + α2 + α3,α1 + 2α2 + 2α3,α3)

= (2α1 + 2α2 + 2α3,α2 + α3,α1 + α2 + 2α3)

= (0,α2 + α3,α1 + α2 + 2α3) + (2αΣ, 0, 0).

Therefore, a2(π(0,α2+α3,α1+α2+2α3)) = πã2(0,α2+α3,α1+α2+2α3) = π(0,α2+α3,α1+α2+2α3),
and this contradicts our assumption that a is fixed point free. □

As a result, we reduce the possible classes of a pre-C.Y. group to D8, Q8 and Q12, when the order
is ≤ 12. Arguing similarly to the beginning of the proof of Proposition 4.34, we get

Proposition 4.36. Let G be a non-abelian pre-C.Y. group isomorphic to D8, Q8 or Q12, and let B
be a target threefold. Then using the notations in Proposition 4.33, the irreducible decomposition of
the induced representation ρ : G → GL(H1(B,WOB)

∨ ⊗W K) is

(1) ρ ∼= ρ1,1 ⊕ ρ2,1, if G ∼= D8;
(2) ρ ∼= ρ1,0 ⊕ ρ2,1, if G ∼= Q8;
(3) ρ ∼= ρ1,0 ⊕ ρ2,1, if G ∼= Q12.

Proof. SinceD8, Q8, Q12 are non-abelian and their representation onH
1(B,WOB)

∨⊗WK is faithful by
Proposition 4.12, we get that the representation ρ does not split into three one-dimensional irreducible
representations. Moreover, by Proposition 4.17, the image of ρ lies in SL(H1(B,WOB)

∨⊗W K). Then
it is easy to check that the decompositions listed in the statement are the only possibilities. □

Corollary 4.37. If G is a non-abelian C.Y. group of order ≤ 12, then G ∼= D8.

Proof. In the cases G ∼= Q8 or G ∼= Q12, we have dim
K
(H1(B,WOB)

∨ ⊗W K)G = 1, which is
contradictory to Lemma 4.29. □

It remains to classify possible C.Y. groups of order 24. It turns out that there is none:

Proposition 4.38. Let G be a group of order 24, then G is not a C.Y. group.
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The proof is based on the following classification of groups of order 24 categorized by their 2-
Sylow subgroups. A proof can be found on [Bur12, p. 115-120], and we follow the notations in
[OS01, Proposition 2.16].

Proposition 4.39. Let G be a group of order 24, and let H be a 2-Sylow subgroup of G. Then H is
isomorphic to one of C8, C2 × C4, C

3
2 , D8, Q8, and G is isomorphic to one of the following 15 groups

according to the isomorphism class of H:

(I) H = 〈a〉 ∼= C8:
(I1) G = 〈c〉 × 〈a〉 ∼= C3 × C8;
(I2) G = 〈c, a〉 ∼= C3 ⋊ C8, where a

−1
ca = c

−1.
(II) H = 〈a, b〉 ∼= C2 ⊕ C4:

(II1) G = 〈c〉 × 〈a, b〉 ∼= C3 × (C2 ⊕ C4);
(II2) G = 〈c, a, b〉 ∼= C3 ⋊ (C2 ⊕ C4), where a

−1
ca = c and b

−1
cb = c

−1;
(II3) G = 〈c, a, b〉 ∼= C3 ⋊ (C2 ⊕ C4), where a

−1
ca = c

−1 and b
−1

cb = c.
(III) H = 〈a1, a2, a3〉 ∼= C

⊕3
2 :

(III1) G = 〈c〉 × 〈a1, a2, a3〉 ∼= C3 × C
⊕3
2 ;

(III2) G = 〈a1, a2, a3, c〉 ∼= C
⊕3
2 ⋊ C3, where c

−1
a1c = a1, c

−1
a2c = a3, c

−1
a3c = a2a3;

(III3) G = 〈c, a1, a2, a3〉 ∼= C3 ⋊ C
⊕3
2 , where a

−1
1 ca1 = c, a−1

2 ca2 = c, a−1
3 ca3 = c

−1.
(IV ) H = 〈a, b | a4 = 1, a2 = b

2
, b

−1
ab = a

−1〉 ∼= Q8:
(IV1) G = 〈c〉 × 〈a, b〉 ∼= C3 ×Q8;
(IV2) G = 〈a, b, c〉 ∼= Q8 ⋊ C3, where c

−1
ac = b, c−1

bc = ab;
(IV3) G = 〈c, a, b〉 ∼= C3 ⋊Q8, where a

−1
ca = c, b−1

cb = c
−1.

(V ) H = 〈a, b | a4 = 1, b2 = 1, bab = a
−1〉 ∼= D8:

(V1) G = 〈c〉 × 〈a, b〉 ∼= C3 ×D8;
(V2) G = 〈c, a, b〉 ∼= C3 ⋊D8, where a

−1
ca = c, b−1

cb = c
−1;

(V3) G = 〈c, a, b〉 ∼= C3 ⋊D8, where a
−1

ca = c
−1, b−1

cb = c;
(V4) G ∼= S4.

Proof of Proposition 4.38. Let B be a target threefold. In the cases (I), (II) and (III), the Sylow
subgroup H is an abelian group of order 8, and H is pre-C.Y. by Lemma 4.8. This contradicts
Proposition 4.23. In the cases (IV1), (IV3), (V1), (V2), the subgroup in G generated by a, c is isomorphic
to C12, which again contradicts Proposition 4.23. In the case (V4), the group G contains a subgroup
isomorphic to A4, which contradicts Proposition 4.35.

It remains to consider the cases (IV2) and (V3). We deal first with the case (IV2). Consider the
representation ρH of H on H

1(B,WOB)
∨ ⊗W K. Since H ∼= Q8, the irreducible representation of ρH

is ρ1,0 ⊕ ρ2,1 under the notations in Proposition 4.33, by Proposition 4.36. Let V1 be the subspace
corresponding to ρ1,0 and let x be a basis vector of V1. Then a(c(x)) = c(b(x)) = c(x) since ac = cb,
so c(x) is an eigenvector of the action a with eigenvalue 1, hence is in V1. This shows that V1 is
G-stable. Take V2 to be a G-stable complement of V1, then under a suitable choice of basis of V2, the
representation of G on H

1(B,WOB)
∨ ⊗W K is of the form

a '→

!

"
1 0 0
0 ζ4 0
0 0 −ζ4

#

$ , b '→

!

"
1 0 0
0 0 ζ4
0 ζ4 0

#

$ , c '→
9
α 0
0 C

:
,

where C is a 2 × 2 matrix. Since c is of order 3, it has three eigenvalues 1, ζ3, ζ
2
3 by Corollary 4.20.

If α = 1, then V1 is G-invariant and this contradicts Lemma 4.29. So α = ζ3 or ζ23 , and by possibly
replacing c with c

−1 we may assume α = ζ3. So C has now eigenvalues 1 and ζ23 . Then the group

element a2c acts as

9
α 0
0 −C

:
and has no eigenvalue 1, contradicting Corollary 4.20.

We treat then the case (V3). We consider again the representation ρH of H on H
1(B,WOB)

∨⊗W K.
Now H ∼= D8 and Proposition 4.36 implies that ρH ∼= ρ1,1 ⊕ ρ2,1 under the notations in Proposition
4.33. Let V1 be the invariant subspace under c, which is one-dimensional by Corollary 4.20. Since
ca = ac

−1 and cb = bc, we see that V1 is G-stable. Let V2 be a G-stable complement of V1, then V1 is
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the subspace corresponding to ρ1,1 and V2 is the subspace corresponding to ρ2,1. By a suitable choice

of bases of V1 and V2, the representation of G on H
1(B,WOB)

∨ ⊗W K is of the form

a '→

!

"
1 0 0
0 ζ4 0
0 0 −ζ4

#

$ , b '→

!

"
−1 0 0
0 0 1
0 1 0

#

$ , c '→
9
1 0
0 C

:
,

where C is a 2× 2 matrix. So the action of bc is of the form

9
−1 0
0 C

T

:
, and has order 2 by Corollary

4.20. However, the group element bc has order 6, a contradiction. □
Proof of Theorem 4.6. Through the discussion of this section, we see that the only possible C.Y.
groups are C2 ×C2 and D8. First, let G be 〈a〉 × 〈b〉 ∼= C2 ×C2 and let B be a target threefold of G.
By the proof of Proposition 4.23, the representation of G on H

1(B,WOB)
∨ ⊗W K is of the form

a '→

!

"
1 0 0
0 −1 0
0 0 −1

#

$ , b '→

!

"
−1 0 0
0 1 0
0 0 −1

#

$

under a suitable choice of basis. Then by Proposition 4.15, the representation of G on H
1(B/K)∨ is

a '→ diag(1, 1,−1,−1,−1,−1), b '→ diag(−1,−1, 1, 1,−1,−1). Decompose a = tα ◦ a0 and b = tβ ◦ b0
such that tα and tβ are translations by α and β, and a0 and b0 are group homomorphisms. Define
E1 := Im(a0 + Id), E2 := Im(b0 + Id) and E3 := Im(a0b0 + Id). We see then E1 (resp. E2, resp. E3)
is the reduction of the identity component of Ker(a0 − Id) (resp. Ker(b0 − Id), resp. Ker(a0b0 − Id))

by Lemma 4.30. It follows then dimE1 = 1
2 rank(H

1(B/K)∨)〈a〉 = 1 by Lemma 4.31, and similarly
dimE2 = dimE3 = 1. Let ιi : Ei ↩→ B be the natural embeddings, then under a suitable choice
of bases of H

1(Ei/K)∨, the dual of the pullbacks ι∗∨
i

: H
1(Ei/K)∨ → H

1(B/K)∨ on crystalline
cohomology can be written in matrix form

ι∗1 =

!

111111"

1 0
0 1
0 0
0 0
0 0
0 0

#

333333$
, ι∗2 =

!

111111"

0 0
0 0
1 0
0 1
0 0
0 0

#

333333$
, ι∗3 =

!

111111"

0 0
0 0
0 0
0 0
1 0
0 1

#

333333$
.

Consider the morphism π : E1 × E2 × E3 → B, (a, b, c) '→ ι1(a) + ι1(b) + ι1(c). By Künneth formula,
we have H1(E1×E2×E3/K)∨ ∼= H

1(E1/K)∨⊕H
1(E2/K)∨⊕H

1(E3/K)∨. So taking the same basis
as above, the dual of pullback π∗∨ : H1(E1×E2×E3/K)∨ → H

1(B/K)∨ is just diag(1, 1, 1, 1, 1, 1) in
matrix form. So by Proposition 2.30, the pullback π∗ : H6(B/K) → H

6(E1 ×E2 ×E3/K) on the top
crystalline cohomology is identity. Hence π is an isogeny. As readily mentioned in Proposition 4.24,
the fact that the representation of G on H

1(B,OB)
∨ is of the same form follows from the fact that

the injection H
1(B,WOB)/V H

1(B,WOB) → H
1(B,OB) in Lemma 2.33 is an isomorphism, and is

equivariant under any automorphism. One can then simply check that the constraint H1(B,OB)
G = 0

holds in this case. Moreover, as we assume p > 2, the group C2 × C2 is linearly reductive, hence by
Corollary 2.39, the quotient B/G satisfies H1(B/G,OB/G) = 0.

The proof of caseG = 〈a, b|a4 = b
2 = abab = 1〉 ∼= D8 is identical, by setting E1 := Im(a0+Id), E2 :=

Im(b0 + Id) and E3 := Im(a0b0a
−1
0 + Id). Moreover, E2 and E3 are isomorphic as a0 sends E2 to E3.

It remains to construct examples for both cases:

Example 4.40 (c.f. also [OS01, Example 2.17]). Let E1, E2 and E3 be elliptic curves. Pick non-zero
2-torsion points τ1 ∈ E1[2]\{0}, τ2 ∈ E2[2]\{0}, τ3 ∈ E3[2]\{0} on each curve. Define on E1 ×E2 ×E3

automorphisms

a(x1, x2, x3) = (x1 + τ1,−x2,−x3), b(x1, x2, x3) = (−x1, x2 + τ2,−x3 + τ3).

Then a and b are of order 2, and ab = ba. Hence 〈a, b〉 defines an action of C2 ×C2 on E1 ×E2 ×E3,
and it is easy to check that this action makes C2 × C2 a C.Y. group.
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Example 4.41 (c.f. also [OS01, Example 2.18]). Let E1 and E2 be elliptic curves. Pick a 4-torsion
point τ1 ∈ E1[4]\E1[2] on E1 which is not 2-torsion, and pick two distinct non-zero 2-torsion points
τ2, τ3 ∈ E2[2]\{0}. Define on E1 × E2 × E3 automorphisms

a(x1, x2, x3) = (x1 + τ1,−x3, x2), b(x1, x2, x3) = (−x1, x2 + τ2,−x3 + τ3).

Let τ denote the point (0, τ2 + τ3). We see then a
4 = b

2 = Id, abab = tτ , atτ = tτa and btτ = tτ b. So a

and b descends to automorphisms on E1 ×E2 ×E2/〈tτ 〉 and defines a D8 action on it, which is easily
verified to be a C.Y. action.

□
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