ON SPLIT COVERINGS OF CALABI-YAU THREEFOLDS IN POSITIVE
CHARACTERISTICS

YANG ZHANG

ABSTRACT. Based on the existence of Bogomolov-Beauville decomposition on weakly ordinary varieties
over perfect fields in positive characteristics [PZ20], we prove the existence of a minimal decomposi-
tion in the sense of Beauville [Bea83], under a pup-simply connected assumption. We classify also
weakly ordinary Calabi-Yau threefolds whose Beauville-Bogomolov decompositions are abelian three-
folds through purely algebraic techniques, which extends a classical result of Oguiso and Sakurai [OS01]
to any perfect field of characteristic p > 2.
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Conventions and Notations. We work always over a perfect field k of characteristic p > 0, unless
specifically mentioned. A variety means always an integral, separated scheme of finite type over a
field. When no possible confusion is made, we write W = W (k) for the ring of Witt vectors over k and
K = W[%] for the fraction field. For a W-module M of finite type, we write W/Tor for the torsion
free part of W. We abbreviate H*(X/K) := H*(X/W) ®@w K for the crystalline cohomology on a
scheme X.

1. INTRODUCTION

A useful tool to study the geometry of compact Kéhler manifolds with trivial canonical bundle is
the minimal split coverings defined by Beauville in [Bea83]:

Definition 1.1. A finite covering space Y of a compact Kéahler manifold X with ¢;(X) = 0 is called
split if Y is isomorphic to a product of a simply connected compact Kahler manifold V' and a complex
torus B. A split covering V x B — X is called minimal if any other split coverings of X factors
through it.
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A split covering of X always exists due to the Beauville-Bogomolov decomposition, which was first
established by Bogomolov in [Bog74]. Beauville then proved in [Bea83] that a minimal split covering
always exist and is unique up to isomorphism.

Restricting to dimension 3, there are only three possibilities on the dimension of the complex torus
B in a split covering;:

(1) Type A: dim B = 3, that is, X is covered by a complex torus of dimension 3.

(2) Type K: dim B = 1, that is, X is covered by the product of a K3 surface and an elliptic curve.

(3) Type S: dim B = 0, that is, X has finite fundamental group, and V' is the universal covering
space of X.

We note that the case dim B = 2 cannot occur, as we have in this case dim V' = 1, implying that V is
an elliptic curve, which contradicts the assumption that V is simply connected. Since the dimension
of B is independent of the choice of a split covering of X, the type of a Kéhler threefold is well-defined.
Oguiso and Sakurai classified in [OS01] all Calabi-Yau threefolds of Type A, by studying their minimal
split coverings:

Theorem 1.2 ([OS01, Theorem 0.1]). Let X be a Calabi-Yau threefold of Type A, then by definition,
X = B/G is an étale quotient of an three-dimensional complex torus B by a finite group G whose
action on B is free. We have only two possibilities of G:

(1) G = {a) x (b) = Cy x Ca, and the action of G on H°(B,QL) is of the form

1 0 0 -1 0 O
a— {0 =1 o ),b=|0 1 0
0 0 -1 0 0 -1
(2) G = {(a,bla* = b* = abab = 1) = Dg, and the action of G on H°(B,QL) is of the form
1 0 O -1 0 O
a0 0 =1 b0 1 0
01 0 0 0 -1

Moreover, both cases actually occur.

In positive characteristics, a Beauville-Bogomolov decomposition theorem for weakly ordinary smooth
projective varieties with trivial canonical bundle was proven by Patakfalvi and Zdanowicz in [PZ20].
The theorem asserts that there exists always a cover

VxB—Z7—X

such that V' is a weakly ordinary projective variety with trivial Albanese, B is an abelian variety,
V x B — Z is an infinitesimal torsor and Z — X is étale. Using this decomposition, we may modify
the definition of a minimal split covering to positive characteristics:

Definition 1.3. Over an algebraically closed field k£ of characteristic p > 0, a Beauville-Bogomolov
decomposition V x B — Z — X with Kx ~ 0 is called split if V' is simply connected and p,-simply
connected, and B is an abelian variety. A split covering V' x B — X is called minimal if any other
split coverings of X factors through it.

Unlike the case over the complex numbers, a Beauville-Bogomolov decomposition is not necessarily
split, due to the absence of simply connected assumptions on V. Nevertheless, we are still able show
the existence of a minimal split covering, assuming that we have a split covering:

Theorem 1.4 (c.f. Theorem 3.4). Let X be a globally F-split smooth projective variety over an
algebraically closed field of characteristic p > 0 with Kx ~ 0. Assume that there exists a split covering
V x B — Z — X, then a minimal split covering of X exists and is unique (up to a non-unique
isomorphism).

Similar to the case of complex manifolds, given a variety X in the above setting, we have three
possibilities on dim V', namely 0, 2, 3, corresponding to ¢(X) = 3,1,0. We call these varieties of Type
A K and S respectively, see Subsection 2.1 for a more detailed treatment. In this thesis, we study the
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minimal split coverings of weakly ordinary Calabi-Yau threefolds of Type A. Note that the definition
for Type A threefolds, that X is covered by an abelian threefold, is still valid without assuming that
the base field is algebraically closed. It eventually turns out that we have the same classification as
over complex numbers.

Theorem 1.5 (c.f. Theorem 4.6). Let X be a weakly ordinary Calabi-Yau threefold of Type A over a
perfect field k of characteristic p > 2, then by definition, X = B/G is an étale quotient of an abelian
threefold B by a finite group G whose action on B is free. We have only two possibilities of G:

(1) G = (a) x (b) = Oy x Cy, and the action of G on H*(B,Op)" is of the form

1 0 0 ~10 0
a— [0 -1 0],b=>]0 1 0
0 0 -1 0 0 -1

(2) G = {(a,bla* = b? = abab = 1) = Dg, and the action of G on H'(B,Op)" is of the form

1 0 0 -1 0 0
a— (0 0 -1, 0 1 O
01 O 0 0 -1

Moreover, both cases actually occur.

The thesis is structured as follows:

In Section 2, we discuss the essential preliminaries for the classification theorem. In Subsection 2.1,
we review the results for Beauville-Bogomolov decomposition in [PZ20], and discuss the properties
of Type A,K,S threefolds in further details. In Subsection 2.2, we recall the construction of Nori’s
fundamental group scheme following Nori’s original paper [Nor82]. We show that the category of
principal bundles of finite groups over a proper connected reduced scheme is Tannakian, hence is
equivalent to the category of rational representations of an affine group scheme. In Subsection 2.3, we
review the construction of crystalline cohomology via the de Rham-Witt complex established by Illusie
in [I179]. In particular, this construction gives a Hodge decomposition on the crystalline cohomology,
which we will heavily use in the classification. We also list some specific properties of the crystalline
cohomology enjoyed by ordinary abelian varieties. In Subsection 2.4, we prove a special version of the
Hochschild-Serre spectral sequence, which gives a tool comparing sheaf cohomologies on a scheme and
on its quotient by a group.

In Section 3, we discuss the minimal split coverings in positive characteristics. Due to the possible
existence of an infinitesimal torsor in the Beauville-Bogomolov decomposition, we need to assume
extra that in a split covering V' x B — X, the variety V' is simply connected and p,-simply connected,
that is, it is simply connected in the usual sense and admits also no non-trivial j,-torsors over it.
Assuming the existence of one split covering, we show that the minimal split covering exists when
the base field is algebraically closed and is unique up to a (non-unique) isomorphism. However, due
to the absence of simply connected assumptions of V' in a Beauville-Bogomolov decomposition, it is
unknown whether a split covering always exists. In dimension 3, we show that a split covering always
exists for Type A or K via explicit descriptions of K-trivial varieties with trivial Albanese in small
dimensions.

In Section 4, we study and give the classification of weakly ordinary Calabi-Yau threefolds of Type
A over a perfect field. The basic idea goes as follows: If X = B/G is a weakly ordinary Calabi-Yau
threefold of Type A, then G acts naturally on the crystalline cohomology H'(B/W) ®@w K and its
subspace H'(B,WOpg) @w K. The form of eigenvalues of any element g € G on H(B/W) @w K
and H'(B,WOpg)®w K can be described very explicitly. By the bound of the degree of characteristic
polynomials, any element of G has at most order 6, and by a theorem of Hall, the group G has
order at most order 24. We then consider the irreducible decomposition of the representation G ~
HY(B,WOpg)Y @w K, through which we can eliminate most possibilities and obtain that G is either
Cy x C9 or Dg. Finally, two examples are constructed to show that these two cases indeed exist.
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2. PRELIMINARIES

2.1. Beauville-Bogomolov decomposition in positive characteristics. The original version of
Beauville-Bogomolov decomposition (see e.g. [Bog74]) states that for any compact Kédhler manifold
X with ¢;1(X) = 0, one can find a finite covering space

VxB—X,

where V' is a simply connected Kéhler manifold with ¢;(V) = 0 and B is a complex torus. In [PZ20],
an analogue for globally F-split varieties with strongly F-regular singularities is proven.

Definition 2.1. Here, “globally F-split” means that the Frobenius Ox — F.Ox splits as an Ox-

module homomorphism, and “strongly F-regular” means that for the stalk Ox , of the singularity
1

and any element ¢ € Ox ;, the Ox ;-module homomorphism Ox , — FyOx ;,1 — c¥® splits.

We review here only the Bogomolov-Beauville decomposition for smooth varieties, for which a
definition of augmented irregularity is required.

Definition 2.2. Let X be a projective variety over a field k. The augmented irregularity ¢(X) of
X is defined as

G(X) := sup{dim Alb(X") | X' — X is étale},
where Alb(X’) means the Albanese variety of X'.

Theorem 2.3 ([PZ20, Theorem 1.1]). Let X be a globally F-split smooth projective variety over a
perfect field of characteristics p > 0 with Kx ~ 0, then there are morphisms

VxB—7Z—X

such that

(1) B is an abelian variety with dim B = §(X),

(2) V is a globally F-split projective Gorenstein variety with strongly F-regular singularities, such
that Ky ~ 0 and ¢(V) = 0.

(3) Z — X is étale,

(4) V x B — Z is an infinitesimal torsor under Hffl() f,5; for some integers j; > 0.

Moreover, one can assume that the action of H;’g) i on'V X B is a diagonal action.

Remark 2.4. Note that unlike the case over complex numbers, where the cover is always étale, in
positive characteristics there is an infinitesimal part. And moreover, V might be singular.

Definition 2.5. Let X be a proper variety over a field k of characteristic p. We say that X is
weakly ordinary if the Frobenius on the top sheaf cohomology HU™X(X, Ox) — HI™X(X F,Ox)
is bijective.

We show that over a perfect field of positive characteristic, for K-trivial normal projective varieties,
“globally F-split” is equivalent to “weakly ordinary”.

Lemma 2.6. Let X be a normal projective variety over a perfect field of characteristic p > 0 with
Kx ~ 0, then X 1is globally F-split if and only if X is weakly ordinary.
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Proof. Let j : U < X be the regular locus of X, then we have O(Kx) = j.wy which is also the
dualizing sheaf w5 of X. Then

Ox — F,Ox splits
§ (Ox is Sz and hence reflexive)
Oy — F.Oy splits
{ (Grothendieck duality)
F.wy — wy splits
¥ (wk = Ox so wk is reflexive)
Fiwk — wk splits
T (WO(X, %) = 1)
HY(X, F.w%) — H°(X,w%) is surjective
{ (Grothendieck duality)
HIMX (X Ox) - HI™X(X, F,Ox) is injective
(R X(X,0x) = 1)
HIMX (X Oy) » HI™X(X, F,Oy) is bijective.
O

Restricting ourselves to globally F-split K-trivial smooth threefolds, we have only three possible
cases on the dimension of V:

(1)
(2)

3)

Type A: V = Speck,dim B = 3. That is, X admits a finite cover from an abelian variety.
Type K: dimV = 2,dim B = 1. In this case, B is an elliptic curve and V is a globally F-split
projective Gorenstein surface with strongly F-regular singularities and ¢(V') = 0.

Type S: dimV = 3, B = Speck. There is little to say in this case.

There are also extra observations we can make from the categorization above.

(A)

In Type A case, we have an infinitesimal quotient of an abelian variety B — Z. Since any
infinitesimal group action on an abelian variety is a translation, the quotient Z has to be an
abelian variety as well. Moreover, since the quotient is an isogeny, we have an isomorphism
HYB,0p) = H¥Z,0z). This ismorphism is Frobenius-equivariant, which shows that Z is
also weakly ordinary. We prove later in Proposition 2.36 that an abelian variety is ordinary if
and only if it is weakly ordinary. Therefore, the Type A threefolds are precisely those admitting
a finite étale cover from an ordinary abelian threefold.

Let € : V. — V be the minimal resolution of V', then it is easy to see that V being weakly
ordinary implies 1% being weakly ordinary, hence Vis globally F-split. By the classification of
K-trivial regular projective surfaces, a list of which can be found in [PZ20, Lemma 12.1], the
surface V is either a K3 surface or a non-classical Enriques surface in characteristic 2, which is
an étale quotient of a K3 surface by the group Z/2Z. Hara and Watanabe proved in [HW02]
that a Q-Gorenstein strongly F-regular local ring has log terminal discrepancies. In our case,
the surface V' with possibly strongly F-regular singularities is Gorenstein, which means that
it has at most canonical singularities. Besides, the morphism V' x B — Z is a p,,;-torsor for an
integer j > 0. Since Z is K-trivial and any p,;-action on B must preserve the canonical form,
we see that the ,upj—action preserves the canonical form of V' as well. In the case where V is
a K3 surface with at most canonical singularities, by [Mat23, Theorem 1.2], we may obtain
p’ <8

If one considers a smooth compact K-trivial Kéhler threefold of Type S over C (the types
are defined similarly), then it is a direct consequence of the Beauville-Bogomolov decompo-
sition that its fundamental group is finite. However, whether a Type S threefold in positive
characteristics has finite fundamental group is still an open problem.
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2.2. Nori fundamental group scheme. Let X be a scheme over a field k, and let = : Speck — X
be a geometric point. Let Fét(X) be the category of finite étale coverings of X, and let FSets be the
category of finite sets. We can define a functor T : Fét(X) — FSets by sending 7 : Y — X to 7 ().
The category Fét(X) together with 7" is a so called “Galois category with fibre functor 77. The étale
fundamental group (X, x) of X with base point x is then defined as the group of invertible natural
transformations from T to itself:

m (X, z) := Aut(T).

By some abstract nonsense in category theory, one can show that Fét(X) is equivalent to the category
of finite sets with 71 (X, x)-actions, and under this identification, the fibre functor 7' is isomorphic
to the forgetful functor m1(X,z) — FSets — FSets. We refer to [Sta25, Tag 0BMQ)] for a detailed
treatment on Galois categories.

The étale fundamental group 71 (X, x) is a profinite group and characterizes all Galois covers of X
in the following sense: There is a principal 71 (X, z)-bundle P on X together with a geometric point
p : Speck — P lying over z, such that given a finite group G, a principal G-bundle Q together with a
geometric point ¢ : Speck — Q, there exist a unique pair (g, f) satisfying:

(1) ¢ : (X, x) — G is a homomorphism of groups,
(2) f: P — Qis a morphism of X-schemes intertwines P and Q with respect to the (X, x)-
and G-action, i.e. the following diagram commutes

m(X,z) x P —— P

o

GXQ—>Q3

where the horizontal arrows are group actions of 71 (X, x) and G,
3) fla) =p.
We are interested in a generalized version in positive characteristics: we want a group scheme W{V (X, x)
together with a principal 7" (X, x)-bundle satisfying the same universal property, but with “any finite
group G” replaced by “any finite group scheme G”. In other words, we would like to have a group
scheme that characterizes all finite torsors over X, but not only the étale ones. Nori proved in [Nor82]
the following:

Theorem 2.7 ([Nor82|). Let X be a proper connected reduced scheme over a field k, and let x :
Speck — X be a k-rational point. There exists an affine group scheme W{V(X,x) over k, which is an
inverse limit of finite group schemes, together with a principal W{V(X,x)—bundle P and a k-rational
point p : Speck — P lying over x, such that given a finite group scheme G, a principal G-bundle Q
together with a k-rational point q : Speck — Q, there exists a unique pair (@, f) satisfying:

(1) ¢ : N (X,x) — G is a morphism of group schemes,

(2) f:P — Q is a morphism of X -schemes that intertwines the m" (X, z)- and G-action,

(3) f(q) =p.

Naturally, Tr{V (X, z) is called the Nori fundamental group scheme with base point x. It is note-
worthy that the base point here is a k-rational point instead of a geometric point in the case of étale
fundamental group.

We review now shortly the construction of the Nori fundamental group, following [Nor82]. The
sketchy idea is that we replace the role of a Galois category with a Tannakian category, which turns
out to be equivalent to the category of finite dimensional representations of an affine group scheme.

Definition 2.8. A tensor category C is a category equipped with a functor ® : C x C — C such that

(1) there exists a functorial isomorphism /4 between X ® (Y ® Z) and (X @ Y) ® Z,
(2) there exists a functorial isomorphism /- between X ® Y and Y ® X,
(3) there exists an identity object 1 € C for the tensor ®, i.e. 1 ® — : C — C is an equivalence.

A functor F : C — D of tensor categories is a functor of categories such that
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(1) F commutes with ®, i.e. Fo® =®o (F x F),

(2) F commutes with 14 and [¢ in the above sense,

(3) F(1) is isomorphic to 1 € D.
Let k be a field. A Tannakian category C is a small k-lilnear abelian tensor category equipped with
a k-linear abelian tensor functor T : C — FVecy, called the fibre functor, such that

(1) the k-semialgebra End(1) is isomorphic to k,

(2) for every L € C such that dim T'(L) = 1, there exists an object L™! € C such that L& L~ = 1.

A functor F : C — D of Tannakian categories is a k-linear abelian functor of tensor categories
such that Tpo F = Tp.

Definition 2.9. Let C be a Tannakian category, and let R be a k-algebra. We can define the pullback
Cr be the category with the same objects as C, but extend the morphisms R-linearly: Home, (X,Y) :=
Home (X, Y)®gR. The functors ® and T can also be extended R-linearly to functors ® g : CRxCr — Cr
and Tgr : Cr — FModg. We then define the automorphism functor of 7' to be

Autp : k — Alg — Sets
R +— Aut(Tr) := {invertible natural transformations Tr — Tr}.

Theorem 2.10 ([DM82, Theorem 2.11]). Let C be a Tannakian category over a field k with fibre
functor T, then
(1) Autyp is representable by an affine group scheme,
(2) C is equivalent to Autp —FRepy,, the category of finite dimensional affine Autp-representations
over k,
(3) under the equivalence C = Auty —FRepy, the fibre functor T is identified with the forgetful
functor Autr —FRep,, — FVecy.
Moreover, let D be an another Tannakian category over k with fibre functor T', then any functor
C — D is induced by a group scheme homomorphism Autr: — Autyp.

Assume that X is a proper connected reduced scheme over a field k. Our aim now is to find a
Tannakian category that encodes all the finite torsors over X. We note the following:

Proposition 2.11 ([Nor82, Proposiiton 2.9]). Let G' be an affine group scheme over k. There is a
one-to-one-to-one correspondence between
(1) tensor functors F : G —Rep;, — QCoh(X), where G —Repy, is the category of (possibly infinite
dimensional) affine G-representations over k,
(2) principal G-bundles P over X,
(3) tensor functors F : G — FRep, — QCoh(X), where G — FRep,, is the category of finite
dimensional affine G-representations over k.

Sketch of proof. (1) = (2): Let F be a functor from G —Rep;, to QCoh(X), and let A be the coordinate
ring of G. Consider the left regular representation G ~ A, which defines a coherent sheaf F(A) on
X. One can show (c.f. [Nor82, Lemma 2.2 & Lemma 2.3]) that F'(A) has an Ox-algebra structure
and Mox (F(A)) is the principal G-bundle that we desire.

(2) = (3): Given a principal G-bundle P and a finite dimensional G-representation V', we can take
the quotient of the diagonal action G ~ P x V and consider the morphism f: P x V/G — P/G = X.
One defines then F'(V) := fuOpyy/q-

(3) = (1): Given a functor F' : G —FRep;, — QCoh(X), one can extend it to the category G — Rep,,
by defining F(W) := iy, e F(V). O

Note that the proposition indicates also that the essential image of any tensor functor G —FRep; —
QCoh(X) lies in the category Vec(X) of vector bundles on X. Moreover, Nori observed more con-
straints on the essential image, as we will discuss now.

Definition 2.12. A vector bundle on X is called Nori semi-stable if it is semi-stable of degree 0
when pulled back to the normalization of each integral curve on X. The category of Nori semi-stable
vector bundles over X is denoted SS(X).
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Definition 2.13. The set of all vector bundles on X forms a semi-ring with respect to direct sums and
tensor products, and the expressions f(V') for f € N[T] a polynomial with positive integer coefficients
make therefore sense. A vector bundle V' is called finite if there exist polynomials f, g € N[T] such
that f(V) = g(V).

Proposition 2.14 ([Nor82, Corollary 3.5]). Finite vector bundles are Nori semi-stable.

Definition 2.15. A vector bundle V is called essentially finite if it is in the abelian category
EFVec(X) generated by all finite vector bundles in SS(X).

Proposition 2.16 ([Nor82, Proposition 3.8]). If F': G — FRep;, — Vec(X) is a tensor functor, then
the image F(V) is essentially finite for any G-representation V.

Finally, Nori showed that EFVec(X) is Tannakian with respect to the fibre functor z*, sending a
vector bundle V' to V|, for a k-raitonal point z. Therefore, the category EFVec(X) is equivalent to
Aut,~ —FReps;. We define then 7 (X, ) := Aut,+ to be the Nori fundamental group scheme of X
with base point z, and define P to be the principal 7{¥ (X, z)-bundle given by Proposition 2.11. We
omit then the verification on their universal properties. The fact that W{V (X, z) is an inverse limit
of finite group schemes corresponds to the fact that EFVec(X) is the direct limit of its subcategories
with finite generators, which are equivalent to the categories of finite dimensional representations of
finite group schemes.

As one can expect, the Nori fundamental group scheme enjoys many similar properties as the étale
fundamental group does. We need for example the following for the proofs later.

Theorem 2.17 ([MS02, Theorem 2.3]). Let X,Y be two proper connected reduced scheme over an
algebraically field k with base points x € X,y € Y. Then the natural map

™ (X XY, (2,y)) = w1 (X, 2) x 71 (Y, )
induced by the two projections is an isomorphism.

2.3. Crystalline cohomology via de Rham-Witt complex. Let X be a smooth proper scheme of
pure dimension d over a perfect field k of characteristic p > 0. The analogue of [-adic cohomology over
p-adic numbers, namely H'(X,Z,) = @Hgt(X ,Z/p"7Z), does not behave well as one would expect
for a Weil cohomology theory. Indeed, we can consider the Artin-Schreier sequence

1-F™

0 —— Z/p"Z —— Ox Ox 0

which is exact over the étale site. Then, we can prove the comparison theorem HY, (X, F) = HY (X, F)
for any quasi-coherent sheaf F ([Mil80, Chap. III, Proposition 3.7 & Remark 3.8]). This shows in
particular HY (X,Ox) =0 for all i > d and hence HY (X,Z/p"Z) =0 for all i > d + 1 as well.

As an attempt for a Weil cohomology theory valued over W (k), Serre considered in [Ser58b]| for
a scheme X the Zariski sheaves W,Ox, with value W,Ox(Spec A) = W,,(A) the Witt vectors of
length n for each affine open in X, and the inverse limit of their sheaf cohomologies H* (X, WQOx) :=
@n H(X, W, Ox), which is now usually called the Witt vector cohomology. It is shown in [Ser58a]
that for an abelian variety, one can get a reasonable first cohomology group by considering the direct
sum of the first Witt vector cohomology group and the Tate module of the dual abelian variety. Still,
this cohomology theory does not behave as a Weil cohomology theory in general, as H (X, WOx) =0
for j > d.

If we consider the crystalline cohomology defined on the crystalline site, this will eventually turn
out to be a Weil cohomology theory valued in the Witt numbers W(k)[%] In [11179], Tllusie gave
an alternative construction of crystalline cohomology via the so-called de Rham-Witt complex. The
de Rham-Witt complex shows not only the relation between crystalline cohomology and Witt vector
cohomology, but it also endows a Hodge decomposition on the crystalline cohomology, which we will
use in the proof later. We review in this section the construction of de Rham-Witt complex following
[CL9Sg].
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Definition 2.18. The de Rham-Witt complex W,Q% is a projective system (W, Q% )nen of strictly
anti-commutative graded algebras together with a differential d such that d(W,Q%) C I/I/'nQ’)}'r1 and
d? = 0. In other words, the differential gives Wi 1% the structure of a complex

e 0 —— WL0% — W04 —4 W02 —4s ..

Moreover, W, 2% satisfies also
1) the projective system (W,0Q% ), is canonically isomorphic to (W, Ox)n,
X
(2) there is an additive operator V' : W,,Q% — W, 11§ such that

e it agrees with the usual Verschiebung on W, Q% = W,,Ox, and
e there are identities

V(z dy) = Va d(Vy), and (d[z])Vy = V([z]"~"d[z] )

where [z] € W,,Ox is the Teich-Miiller representative of z € Oy,
(3) W% is initial in the category of all projective systems satisfying (1) and (2).

We can construct the de Rham-Witt complex W, Q2% formally as a quotient of O, _ , inductively
on n: We define first W15 := Q%, and V : WpQ5 = 0 — W1Q% is just the zero map. Assume that
we have constructed W, Q% and the operator V : W,,_1Q% — W,Q%. Let 7, : QI./VnOX — WpQ% be
the quotient map. We define a homomorphism

6:Wn0}8}i+1—>§2€vnox, AL R Rx;— a-dry---dx;

and write K* for the kernel of the composition 7, o¢ : WnO?}”l — Q%/VnOX — WnQ’X Define another
homomorphism

. ®i+1 7
v WTLOX — QWn+10X’

aRr R Qx> Va-dVxy---dVz;.

One can show that @, v(K?) is a graded ideal in Q0 Let I C Q%Vnﬂox be the subsheaf

generated by elements of the form (d[z])Vy — V([z]P~'d[z] y), and let N be the graded ideal in
Q.. o0, generated by @, v(K') and I. We define then Wy 11Q% == Q= o /N. The restriction
map Wy,110Q% — W,Q% is inherited from the restriction Res : Qw, . 0y — Qw,0y by showing that
7, 0 Res(N) = 0. Similarly, the map v descends to a map V : W, Q% — W, 11Q% as mp41 0v(K*) = 0.
This finishes the construction of Wy, 11Q%. We refer to [I1179, Théoreme 1.1.3] for further details.

Proposition 2.19 ([CL98, Proposition 3.1]). There exists a unique additive operator F : W,Q% —
Win-1Q5% whose restriction on W,,Ox is the usual Frobenius o and satisfying

F(ab) = F(a)F(b), FdV =d on W,Q% = W,O0x, and F(d[z]) = [z]P~d[z].
Moreover, there are also the identities
FV=VF=p, FdV =d, andxzVy=V(F(x)y).

We can compare the operator F' with the endomorphism £ on We2* induced by the Frobenius o
on WeOx. One can show that £ = p'F on W.QZ, or in other words, the previous proposition shows
that the Frobenius on W, is divisible by p".

Ezample 2.20 ([CL98, Section 3.3]). We may explicitly describe the de Rham-Witt complex of the
ring A :=TF,[T1,...,Tn]. Define two other rings

Bi=1Z,[T1,...,Ty], C:=Q, [Tf‘“,...,T};‘”] = [T{’_T,...,T]{’[_T].
r>0

An m-form w € Q’g/(@p can be uniquely written as a sum

I, . dT,
11i1 T; ‘

im

w= Z iy,ooign (11, ..., TN)

1<iy < <im <N
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are in the subring Z, [Tf_oo, e ,TJI\’,_oo C C. Let E™ C le/Qp
1

be the colllection of m-forms w such that w and dw are integral. For example, Tf is not in E° but
1

pT? is in E°. Define two operators:

We call w integral if all of the a;, . ;

im

1
F:T;,—TF, V:T;w— pT}

and extend them to operators on C such that F' and %V are homomorphisms of Q,-algebras. They
induce two corresponding operations on 22, Q) and we denote them also by F' and V. One checks that

the subscomplex E*® is preserved by F and V. Then we can define E™ := E™/(V"E™ + dV"E™ 1),
The operator V' on E™ descends to an operator Ej* — EJ' , which we denote also with V' by an
abuse of notation. One can verify that V(zdy) = Va d(Vy), V(d[z]) = [z]P~'d[z] and EY = W, A. By
the universal property of de Rham-Witt complex, there is a unique morphism W,Q% — FEg. Illusie
showed in [I1179, Théoreme 1.2.5] that it is an isomorphism.

Denote with WQ$, := lgl W, Q% the projective limit of the system (W,Q% )nen. Illusie proved the
following two results:

Proposition 2.21 ([Il179, Proposition I1.2.1]). Assume that X is a smooth proper variety. The natural
maps

RT(WQY) — Rlim RT (W, %)
HI (X, WQ) — lim HY (X, W, Q)

are isomorphisms.

Proposition 2.22 ([IlI79, Théoréme I1.1.4]). Assume the same setting for X. There is a natural
isomorphism between the cohomology of X on the crystalline site Cris(X/W,,) and the hypercohomology
of the de Rham-Witt complex W, Q% :

HY(X/Wy) = H (W),
which is compatible with the restrictions H*(X/Wy1) — H*(X/W,,) and Wy, 11Q% — WQ%
. Combining these two propositions, we obtain

Theorem 2.23. Let X be a smooth proper variety. There is a natural isomorphism between the
crystalline cohomology of X and the hypercohomology of the de Rham-Witt complex of X :

H*(X/W) 2 H*(WQY%).
Proof. By definition H*(X/W) = Wm H *(X/W,), so it suffices to show that the natural map
RT(WQ%) = H'(Rlim RT(W,0%)) — lim R'T(W,Q%)

is an isomorphism. It was shown in [I1179, Théoréme I1.2.7] that there are isomorphisms
RT(WQY%) @% Wy, = RT(W,0%).

By [BOT78, Proposition B.5], we see that RI'(W,Q%) is a quasi-consistent projective system indexed
by n in the sense of [BO78, Definition B.4]. So the result follows from [BO78, Proposition B.7.2]. O

The isomorphism implies in particular that one can compute the crystalline cohomology via the
spectral sequence of filtered complex:
EY = H/(X,WQk) = H™V (X/W),
which is equivariant with respect to F = p'F on H7(X, W% ) and the Frobenius o on H (X/W).

Inspired by above, we would like to study in details the structure of Frobenius on modules over the
Witt ring, hence the following definition.
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Definition 2.24. An F-crystal is a free W-module M of finite rank along with an injective o-linear
endomorphism ¢ : M — M, i.e. p(am) = o(a)p(m) for alla € W,m € M.

An F-isocrystal is defined identically as an F-crystal but with W replaced by K := W[%]

A morphism of F-crystals (resp. F-isocrystals) u : M — N is a homomorphism of W-modules
(resp. K-vector spaces) such that oy ou = uo .

An isogeny of F-crystals is a morphism whose induced homomorphism M ®w K — N Qw K is
an isomorphism.

Ezample 2.25. (1) The torsion free part H7(X,WQ%)/Tor of the sheaf cohomology of the de
Rham-Witt complex is an F-crystal with respect to F or F = p'F. The fact that F is
injective can be derived from the equality F'V = VF = p.

(2) The torsion free part of the crystalline cohomology H’(X/W)/Tor is an F-crystal with respect
to the Frobenius o induced by the Frobenii on the crystalline sites. The Poincaré pairing
HI(X/W) x H2=i(X/W) — H2(X/W) 25 W satisfies (0(z), o(y)) = plo(z,y), c.f. [BerTd,
Proposition VII.3.2.4]. Hence the injectivity of o follows from the non-degeneracy of the pairing
<_7 _>'

(3) Let W,[T'] be the non-commutative ring of one-variable polynomials with coefficients in W
subject to the relation T'a = o(a)T for a € W. Let aw = /s be a non-negative rational number
where r and s are coprime. The module M, = W,[T]/(T* —p") can be made into an F-crystal
by letting ¢(m) := T'm. The injectivity of ¢ follows directly from 7% = p".

The last example is of importance by the following description on the category of F-isocrystals, due
to Manin.

Theorem 2.26 ([Man63, Theorem 2.1]). If k is algebraically closed, then the category of F-isocrystals
18 semisimple and the simple objects are M, Qw K, i.e. every F-isocrystal is isomorphic to a direct
sum P e+ (Ma @w K)" with finitely many ng > 0.

As a direct corollary, over an algebraically closed field, every F-crystal is isogenous to a direct sum
69046@7L Mge.

Definition 2.27. Let M ~ @a€@+ M7~ be the decomposition of an F-crystal M up to isogeny.
The collection of a such that n, > 0 is called the slopes of M, and n, - ranky (M,) is called the
multiplicity of the slope a. Over an non-algebraically closed field, the slopes and multiplicities of

M is defined to be the slopes and multiplicities of M @yw W (k).

With the language of F-crystals, the spectral sequence of filtered complex is indeed a spectral
sequence of F-crystals (up to torsion):

By = (H/(X,WQk),p'F) = (H™(X/W),0).
Since F'V = VF = p, the slope of F = p'F must be in the interval [i,7 + 1]. Tllusie proved then
Theorem 2.28 ([I1179, Théoreme I1.3.2, Corollaire 11.3.5]). Assume that X is a proper smooth variety.

The spectral sequence of the filtration on WQ® degenerates at page E1 up to torsion. In particular,
there is an isomorphism of F-isocrystals

(H(X/W) ow K, 0)fiiv1) = (H (X, WQ) @w K, p'F).
Moreover, we can give finer restrictions on the slopes:

Proposition 2.29 ([CL98, Exemple I1.1.2]). Assume furthermore that X is projective. The F-crystal
HI(X/W)/Tor has slopes in [0,7] if 0 < j <d, and in [j —d,d] if d < j < 2d.

Proof. We prove the statement via an induction on d. We first remark that the Poincaré pairing as in
Example 2.25 implies that the slopes of H*(X/W')/Tor are in [0, d]. The statement for the case when
X is a curve follows then from the Poincaré pairing. Now assume that the statement holds for varieties
of dimension d—1. Given X of dimension d, one can pick a general hyperplane section H, and consider
the restrictions H*(X/W)/Tor — H*(H/W)/Tor, which is injective for degree j € [0,d — 1] by the
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weak Lefschetz theorem (see [Ber73]), showing the statement for j € [0,d —1]. The case j € [d+ 1, 2d]
follows then by Poincaré duality as in Example 2.25. So we have now only H%(X/W) left, but the
statement for which follows directly from the Poincaré pairing. O

We restrict ourselves then to the case where B is an abelian variety of dimension d. Analogous to
the structure of étale cohomology of an abelian variety, we have the following result:

Proposition 2.30 ([1179, I1.7.1]). The first crystalline cohomology H'(B/W) of an abelian variety
B of dimension d has no torsion, and there is a natural isomorphism of F-crystals

J
HI(B/W) = \ H'(B/W)

for all j € N. In particular, H'(B/W) has rank 2d.
Similar to the identification H'(B,Q;)" = I'&HB[Z"], we have

Proposition 2.31 ([I1179, Remarque I1.3.11.2]). There is a natural isomorphism
H'(B/W) = D(B[p™])
between the first crystalline cohomology of B and the contravariant Dieudonné module of the p-divisible
group B[p*>] := @B[p”]
We refer to [Dem06] for a detailed treatment on Dieudonneé modules.
Definition 2.32. Let B be an abelian variety of dimension d. The p-rank of B is defined as
p — rank(B) := dimg, B[p|(k).
An abelian variety B is called ordinary if p — rank(B) = d.

We then show that for an abelian variety, the two notions of “ordinary” and “weakly ordinary”
agree. To prove this, two small lemmas are needed.

Lemma 2.33. The natural map H)(X,WOx)/VH(X,WOx) — HI(X,0Ox) is injective for any
smooth proper variety X.

Proof. By Proposition 2.21, we see that the Witt vector cohomology H*(X, WOx) is indeed the sheaf
cohomology associated to the sheaf WOx : Spec A — W(A). It is easy to check that the following
sequence is exact:

0—— WOX L) WOX Res OX 0.

So the lemma follows from taking cohomology long exact sequence of the above short exact sequence.
O

Remark 2.34. A subtlety here is worth mentioning. One need to be careful when distinguishing the
operator V on an F-crystal M and the Verschiebung V' on the Witt vectors. So V M can be interpreted
as the image of the operator V', or the submodule of M generated by the ideal V' C W. The notation
V in the lemma above refers to the former one, namely the operator V on the F-crystal H/ (X, WOx).
If an F-crystal has slope 0, for example H*(B, WOp) for an ordinary abelian variety B, then the two
notions of V' agree, and we will use this fact in Section 4. In general however, these two notions are
not the same. We can take for example M = W @& W - T, which is a free W-module generated by 1
and T'. The operators I and V acts as follows:

F(a)=o0(a)- T,
F(a-T) =p-ola),
V(a) =0 (a) T,

Va-T)=p 07 (a),

where o is the Frobenius on W. One can check that this F-crystal is of slope %, and appears as the
first crystalline cohomology group of a supersingular elliptic curve. It is then not hard to show that
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M/V M = W/pW is one-dimensional over the field W/pW, but M/(VW) - M is two-dimensional, as
M is of rank 2 over W.

Lemma 2.35 ([Ill79, 11.7.1.2]). We have the following equation on the p-rank of an abelian variety
B:

p — rank(B) = rank H'(B/W )~ = rank H'(B/W)—1,
where HY(B/W)—q (resp. HY(B/W)-1) is the F-subcrystal of H(B/W) with slope 0 (resp. 1).

Proposition 2.36. Let B be an abelian variety of dimension d. The following are equivalent:
(1) The p-rank of B is d;

(2) The F-crystal H'(B,WOpg)/Tor is purely of slope 0;

(3) The F-crystal HYB,WOpg)/Tor has rank 1 and is of slope 0;

(4) The Frobenius action on H'(B,WOg)/Tor is an isomorphism;

(5) The Frobenius action on HY(B,WOpg)/Tor is an isomorphism;

(6) The Frobenius action on HY(B,Op) is an isomorphism;

(7) The Frobenius action on HY(B,Opg) is an isomorphism.

In particular, B is ordinary if and only if B is weakly ordinary.

Proof. We show the equivalence as indicated in the graph

)= 2 —= @: (6)

1]
3) = (5) = (7).

(1) = (2): The equation p — rank(B) = rank H'(B/W)—y = rank H'(B/W)-; = d by Lemma 2.35
together with rank H'(B/W) = 2d by Proposition 2.30 implies directly H'(B/W) = H(B/W)—¢ ®
H'(B/W)-; and we can conclude using Theorem 2.28.

(2) = (1): By Proposition 2.29, the slopes of H'(B/W) are in [0,1]. By Lemma 2.35, we have
p—rank(B) = rank H'(B/W)—o = rank H'(B/W)_;. If the p-rank of B is less than d, then H(B/W)
will have a slope in (0, 1), which by Theorem 2.28 contributes to the slopes of H'(B,WOpg)/Tor, a
contradiction.

(2) = (3): By Proposition 2.29, the F-crystal H'(B/W) decomposes as H'(B/W) = HY(B/W)—o®
H'(B/W)—1. Then by Lemma 2.35, we get rank H'(B/W)—¢ = rank H'(B/W)—1 = d. In particular,
we have HY(B,WOg) = N\ H'(B,WOp) up to torsion, so H(B,WOp) is of rank 1.

(3) = (2): By Proposition 2.30, we get rank H'(B/W)—¢ = d and hence rank H'(B/W)-1 = d as
well by Lemma 2.35. Since rank H'(B/W) = 2d, this shows already that H'(B/W) has no slope in
(0,1).

(2) & (4): Clear.
(3) & (5): Clear.

(4) = (6): Since FV = VF = p on H'(B,W0Opg)/Tor and F is an isomorphism, the subset
V(HY(B,WOpg)/Tor) can be identified as p(H'(B,WOpg)/Tor). By Lemma 2.33, the natural map
HY(B,WOg)/pH (B,WOp) = H{(B,WOpg)/VH (B,W0Og) — H'(B,0p) is injective, hence is
also surjective by a comparison on ranks. This implies then the projection H'(B,WOpg)/Tor —
H'(B,Op) is also surjective. If N C H!(B,Op) is a subspace on which the Frobenius is not an
isomorphism, then its preimage in H'(B,Op)/Tor is a non-zero submodule on which the Frobenius
is not an isomorphism. This yields a contradiction.

(6) = (4): The natural map H'(B,WOg)/VH(B,W0Opg) — H'(B,0Op) is injective by Lemma
2.33. If we can find a non-zero subcrystal M C H'(B,WOp) with non-zero slope, then the Frobenius
will be nilpotent on M/VM C H'(B,Op). A contradiction.

(5) < (7): The proof is identical with (4) < (6) O

We prove also the following lemma concerning the structure of Witt vector cohomology on an
ordinary abelian variety for later use.
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Lemma 2.37. For an ordinary abelian variety B of dimension d, the natural map N HY(B,WOp)ow
K — H’(B/K) is injective and the image is H’(B,WOp) @w K. As a consequence, there is an
isomorphism of F-isocrystals \* H'(B,WOp) @w K = H*(B,WOp) @w K.

Proof. By Proposition 2.30, one has an isomorphism of F-isocrystals H*(B/K) = \* H'(B/K), from
which we may deduce directly the injectivity. By Proposition 2.36, the F-isocrystal H'(B, WOp)®@w K
is purely of slope 0, so the image of A\’ H'(B, WOp) @w K is precisely the slope 0 part of H/(B/K).
By Theorem 2.28, the slope [0,1) part of the F-isocrystal H/(B/K) is H/(B,WOpg) @w K. By
Proposition 2.36 and Lemma 2.35, the F-isocrystal H'(B/K) has only slopes 0 and 1, so again by
Proposition 2.30, the slopes of H/(B/K) are all integers, so H’ (B, WOp) @w K is purely of slope 0,
whence the surjectivity. O

2.4. Hochschild-Serre spectral sequence. The Hochschild-Serre spectral sequence is a tool for
comparing various cohomology groups of a scheme with the ones of its quotient by a group. The
originial version of the Hochschild-Serre spectral sequence can be found in [HS53], which concerns
mainly the case for G-modules. We prove here a version which we need for later use.

Proposition 2.38. Let X be a scheme over k admitting an action by a group G, and assume that the
quotient m: X — Y = X/G exists. Given a sheaf F of Oy-modules, and assume that the natural map
HO(Y,F) — HY(X,n*F) is an isomorphism (which holds in particular for F = Oy ), then there is a
spectral sequence

EY = HP(G,HY(X,7*F)) = HPTI(Y, F)

Proof. One can consider the composition of functors
Oy — Mod — G — Mod — Ab,
F = HY(X,m*F) — H(X,7*F)¢ = H(Y, F).
The claim follows then by applying the Grothendieck spectral sequence, see e.g. [Sta25, Tag 015N]. O

In particular, if G is linearly reductive over k, e.g. if G is finite and |G| is not divisible by p, then
all higher group cohomologies of G vanish, hence

Corollary 2.39. In the above setting, if G is linearly reductive, then we have an isomorphism
HY(Y,F) = H/ (X, F)°.
for all 7 > 0.

3. MINIMAL SPLIT COVERINGS

Let X be a compact Kéhler manifold with ¢;(X) = 0, then by [Bog74], X admits a Beauville-
Bogomolov decomposition V x B — X, where V' is a simply connected Kéhler manifold with ¢;(V) =0
and B is an abelian variety. We call such a decomposition also a split covering, following [Bea83].
The expression “split” is due to that the Albanese of V' x B is the projection onto B, which admits a
section. A natural question is: How many split coverings does X have? And the answer is not hard:
X admits infinitely many split coverings. Indeed, let ¢ : V x B — X be a split covering, and let
[n] : B — B be the endomorphism of multiplication by n, then o (Id X[n]) : VxB -V x B — X is
again étale. By applying different integers n, we obtain infinitely many non-isomorphic split coverings.

An observation from the argument above is, if the relative automorphism group Aut(V x B/X)
contains a translation of B, then we can take the quotient of that translation and get a new abelian
variety B’ together with a split covering V' x B’ — X, which is smaller than V' x B — X in the sense
that the latter one factors through the former one. To be more precise, consider the two embeddings
of groups Aut’(B) < Aut(V x B) and Aut(V x B/X) < Aut(V x B) and let G be the intersection
of their images. Then B/G is again an abelian variety and the natural map V x B/G — X is étale,
hence a smaller split covering. This motivates the following definition:
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Definition 3.1. Let X be a compact Kéhler manifold with ¢;(X) = 0. A split covering V x B — X
is called minimal if Aut(V x B/X) does not contain any translation of B, i.e. the group G defined
above is trivial.

Now a more interesting question is: How many minimal split coverings does X admit? The result
is due to Beauville, which also explains why the name “minimal”:

Theorem 3.2 ([Bea83, Proposition 3]). There exists a unique minimal split covering Vo x By — X
(up to a non-unique isomorphism), and any split covering V' x B' — X factors through the minimal
one:

In positive characteristics, we can define similarly the notion of a split covering:

Definition 3.3. Let X be a globally F-split smooth projective variety with Kx ~ 0 over an alge-
braically closed field of characteristic p > 0. A Beauville-Bogomolov decomposition V x B — Z — X
(c.f. Theorem 2.3) is called split if

(1) V is simply connected, i.e. V has no non-trivial finite étale covers, and j,-simply connected,
i.e. V admits no non-trivial p,;-torsors over it for any j > 0,

(2) the infinitesimal part V x B — Z is a Hfff) Jps;-torsor with a diagonal action, such that the
action on V is faithful and the action on B is free.

It is called minimal if for any other split covering V' x B’ — Z’ — X, there is a factorization:

In this section, we prove the corresponding existing result of a minimal split covering in positive
characteristics:

Theorem 3.4. Let X be a globally F'-split smooth projective variety with Kx ~ 0 over an algebraically
closed field of characteristic p > 0. Assume that there exists a split covering V x B — Z — X, then
a minimal split covering of X exists and is unique (up to a non-unique isomorphism,).

However, here it is in general not required that in a Beauville-Bogomolov decomposition V' x B —
Z — X, the fundamental group of V is trivial, nor that the Nori fundamental group scheme of V
has no py-quotients. So it is possible that there exists a variety admitting no split covering at all.
Nevertheless, in dimension 3, we have an explicit description on the possible V' that may occur, so we
can prove the following:

Corollary 3.5. Assume that X is 3-dimensional and of Type A or Type K (c.f. Section 2.1), then X
admits a unique minimal split covering.

Proof. By Theorem 3.4, it suffices to show that X admits a split covering. For Type A the assertion
is trivial. For Type K, we know that there is a decomposition V x B — Z — X such that V is either
a K3 surface or non-classical Enriques surface with at most canonical singularities (c.f. Section 2.1),
and B is an elliptic curve. N N

Assume that V is a K3 surface, and let € : V' — V be its minimal resolution. Now V is a smooth

K3 surface, whose Picard group Pic(V) is free of torsion (see [Huy16, Proposition 1.2.4]), and Pic(V)
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can be embedded into Pic(f/) via pullback €*, hence is torsion-free too. The Kummer sequence

j
(=) G, 0

0 ? /J'pj Gm
gives a half short exact sequence
0 —— HL (Vi) — Pic(V) 2 Pie(V),

showing that V' has no non-trivial ju,;-torsors. Next, assume that p : V' — V is a finite étale cover
from an irreducible variety V/. We note that Oy is the dualizing sheaf on V', hence Oy is the dualizing
sheaf on V’. This implies in particular h%(V’, Oy) = h?(V’,Oy+) = 1. Then we have

WV, 0pr) =2 = x(V', 0y) = 2 — deg(n) - x(V, Ov) = 2 — 2deg(p),

implying that deg(u) = 1, hence V' is simply connected, and V' x B — Z — X is a split covering.
Now we assume that V is a non-classical Enriques surface. Note that this case occurs only in
characteristic 2.
Claim: The universal cover of V is a K3 surface with at most canonical singularities, which is of degree
2 over V.
Proof of claim: Let V — V be the minimal resolution of V', which is a regular non-classical Enriques
surface with an étale Z/2Z-cover by a K3 surface. We denote the étale K3 cover of 1% by W. Let E be
the exceptional divisor of the resolution V — V', which is a union of rational (—2)-curves. Therefore,
the preimage of E in W is just two copies of F, as rational curves has no non-trivial étale covers. We
may then contract F II E to get a K3 surface W with at most canonical singularities, and there is a
map W — V', and we claim it is étale.

\

FIIE w %%
E V 14
Indeed, the relative differential Qyy/y- is only supported on the singularities of V', and on the singular
points W — V is also étale, as it is just the contraction of F Il E mapping to the contraction of F.
Since W is simply connected by what we have shown before, W is the universal cover of V. |
Let W be the degree two universal K3 cover of V', and consider W x B — X. We get naturally a

factorization W x B — Z' — X such that W x B — Z' is purely inseparable and Z’ — X is separable,
and we get a diagram as follows:

W x B T » V x B
7' s 7

We claim then

(1) the upper square is Cartesian, and
(2) o' is étale,
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from which one can deduce that W x B — Z’ — X is a split covering. Let T' denote the fibre product
(V x B) xz Z', then we have induced morphisms 7/ : T'— V x B and w : W x B — T as below:

W x B

7 ——— 7

First we show that deg(7) = deg(m) = 2. Pick z € Z(k) a general closed point, then its set theoret-
ical preimage u~!(z) C V x B(k) consists also of a single point, as u is purely inseparable. Hence
|77 (u=1(2))| = deg(n) = 2, as 7 is étale. But then 2 = deg(n) = |77 (u™1(2))| = [v/~ (77 1(2))| =
|771(2)| = deg(7), where the latter equality is again because v’ is purely inseparable. However, we
have also deg(7") = deg(7) = 2 as 7’ is a pullback. This implies that deg(w) = 1 and hence T'= W x B,
proving the first claim. The second claim follows then directly from the fact that 7 is étale by fpqc
descent. So W x B — Z' — X is a split covering, as we have shown before that W is simply connected
and pu,-simply connected. In both cases of V' we have successfully constructed a split covering, and
we can deduce the existence of a minimal split covering using Theorem 3.4. ]

Remark 3.6. In the proof of Type K case above, we actually use no assumptions on the dimension of
B. So this proof can be directly generalized to all varieties X satisfying the assumptions in Theorem
2.3, such that ¢(X) = dim X — 2. This improves in particular the result in [PZ20, Lemma 12.2].

To prove Theorem 3.4, we need the following lemma.

Lemma 3.7. Let V be a variety with trivial Albanese and let B be an abelian variety. The natural
morphism Auty X Autp — Auty«p of group schemes is an isomorphism.

Proof. For a k-scheme S, the relative Albanese of (V x B)g over S is simply the projection onto Bg, see
[Gro62, Théoreme 3.3]. For each o € Autyxp(S), one can find 7 € Autp(S) such that the following
diagram commutes:

(V x B)s —2— (V x B)g

| |

BS —r Bs.
This implies then o is of the form (a,b) — (&(a), 7(b)) for (a,b) € V(S) x B(S). Note that the
assignment

B(S) — Aut(Vs),

b &t
is an action of B on V, which has to be trivial (c.f. [Bril8, Corollary 2.19]), and therefore o must be
of the form (§,7) for £ € Auty(S) and 7 € Autp(95). O

Remark 3.8. Lemma 3.7 shows in particular that the infinitesimal torsor V x B — Z is always induced
by a diagonal action.

Proof of Theorem 3.4. Suppose we are given a split covering V x B — Z — X. By Lemma 3.7, we
have an isomorphism Auty g = Auty X Autp. Let G be the intersection of 1 x Aut% and Aut(y )/ x
in Aut(yypy, i.e. the group scheme of translations of B over X. We can show that G is finite étale:
Finiteness follows directly from that V' x B — X is finite, and étaleness follows from that the action
of the infinitesimal part of Aut(y,p)/x, which is nothing but Aut(y,py/z, is faithful on V. Since
G can be regarded as a subgroup of Aut(y,p/x), and Z is a quotient of V' x B by the infinitesimal
part of Aut(yp)/x, which is a normal subgroup scheme, it follows that the action of G on V x B
can be descended to an action on Z, Consider then Vj :=V, By := B/G, Zy := Z/G, and the natural



ON SPLIT COVERINGS OF CALABI-YAU THREEFOLDS IN POSITIVE CHARACTERISTICS 18

morphism Vy X By — Zg — X. We claim that this is a split covering. Indeed, consider the following
diagram

V x B ul » Vo x By
A A

and we shall prove

(1) w is an infinitesimal torsor under the same group for the torsor v/, and

(2) v is étale.
The first claim follows from the fact that the upper square is Cartesian, which can be proved using
the same degree argument in Corollary 3.5. In particular, the morphism 7 is étale by fpqc descent on
. We may then use [Sta25, Tag 02K6] to conclude that v is étale.

We then claim that the split covering Vy x By — Zy — X is minimal. Let V; x By — Z; — X be

another split covering. Let Z be a connected scheme finite étale over Zy X x Z; such that the tower

Za
Zo Z
X
is Galois, i.e. Zo — X is a torsor for a finite étale group scheme, and Zy and Z; is induced by quotients

of subgroups. For example, we can take Z5 being the Galois closure of a connected component of
Zy Xx Z1 in the Galois category Fét(X) of schemes finite étale over X. We then build a diagram

Y, Y; > V1 X By
| | |
Yo > Lo A
| | |
Vo x By > Zo X

such that the indicated three squares are Cartesian. The scheme Yj is therefore an Autz,,z -torsor
over Vp x By. By Theorem 2.17, Yy must be of the form Vj x B{ ,where Vj (resp. Bj) is an étale
torsor over Vj (resp. Bp). By the simply connected assumption on V; in a split covering, V{ is a trivial
torsor over V. By replacing Vj and B{, with one of its connected components, we may assume that
Y) is integral and of the form Vj x B{, for Bj an abelian variety over By. Similarly, we may assume
that Y7 =V} x Bj for B} an abelian variety over By. Now the diagram looks like

Yo —— Vix B, —— Vi x By

L |

VE)XBé ZQ Z1
VbXBO \Zo > X.

Again by Theorem 2.17 and the assumption that Vp is free of p,;-torsors, Y2 must be of the form
Vi x B{j, where V{ is a trivial infinitesimal torsor over Vj and B{ an infinitesimal torsor over Bj.
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Similarly, Yo 2 V{" x BY with the parallel properties as above. By replacing Y2 with its reduction, we
may assume Yz = Vy x B{/, where B{ is an abelian variety over B(), and Y> = V; x BY, where BY is
an abelian variety over Bj. In particular, Vj = V; and B{ = B} by Lemma 3.7. Now the diagram
becomes

VbXBg ‘V1><Bl

[N |

ZQ—>Zl
‘/(]XBO \ZO > X.

The morphism Vy x B{ — Vp x By is given by the quotient of the group scheme of translations
Aut BY/B,- By the construction of Vi x By, we know that Aut BY/By = Aut v, « BY)/X ﬂAut%g is the

group scheme of all translations of Bj over X. Here, we use again the identification Auty By =
Auty, x Aut py by Lemma 3.7, and identify Aut (v« Byy/x and AutB(/)/ as subgroups in Auty BY-
Similarly, Vp x Bj — Vi x By is given by the quotient of the group scheme Aut BYy/By» Which is
a subgroup of Aut(y, BY)/X ﬂAut%(,),. The inclusion Aut By/B, C Aut v, « BY)/X ﬂAut%(,), induces a
factorization Vi x By — Vy x By — X, and the factorization Z; — Zy — X is shown simply by taking
the separable parts of V; x By — X and Vj x By — X. O

Remark 3.9. We note that the factorization V3 x By — VX By is the quotient by a group of translations
of By over X, as Vy = V;. The infinitesimal part of a split covering is assumed to contain no translation
of By. As aresult, we derive that Vyx By — Z and Vi x By — Z are torsors under a same infinitesimal

group scheme H?Sl() [pii» and the j; might be invariants of X of interest.

4. WEAKLY ORDINARY CALABI-YAU THREEFOLDS OF TYPE A

Let X be a globally F-split smooth projective variety over a perfect field k£ with Kx ~ 0 and
G(X) = dimX. By Theorem 2.3, there is a finite cover B — X from an abelian variety B. As
discussed in the case-by-case study in Section 2.1, we can get the following:

Lemma 4.1. Let X be of the same setting as above. Then X admits a finite étale cover from an
abelian variety.

Proof. Let B — Z — X be a Beauville-Bogomolov decomposition of X, where

(1) B is an abelian variety,

(2) B— Zisa [[mX f4,5;-torsor, and

(3) Z — X is étale.
Let G C Autg/x be the subgroup scheme consisting of all translations of B over X, then B/G — X
is a smaller abelian variety cover through which B — X factors. As any infinitesimal group action on
an abelian variety is a translation, Autg,z is a subgroup of G, so B/G — X is étale. O

Similarly to a minimal split covering in Definition 3.3, we call a cover B — X minimal if Autp,x
does not contain any translation of B, but here we do not require that k is algebraically closed.
We now confine ourselves to weakly ordinary Calabi-Yau threefolds of Type A.

Definition 4.2. We say a variety X is Calabi-Yau if X is a smooth projective variety with trivial
canonical bundle, and H!(X,Ox) = 0. We say that a weakly ordinary Calabi-Yau variety X is
of Type A if the base field k is perfect, and X admits a finite cover from an abelian variety, not
necessarily assuming that k is algebraically closed.

By Lemma 4.1, to classify all weakly ordinary Calabi-Yau threefolds of Type A, it would suffice to
classify all the possible finite group actions G ~ B on abelian threefolds such that

(1) g is fixed point free for all g € G,
(2) G contains no non-zero translations,
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(3) H(B,wp)® =k,
(4) H'(B,0p)¢ =0.

Definition 4.3. Following the notations in [OS01], we call a group G a C.Y. group of Type A
(resp. a pre-C.Y. group of Type A), if it admits an action on an ordinary abelian threefold B
satisfying the conditions (1) - (4) (resp. the conditions (1) - (3)) listed above, and the corresponding
abelian threefold B is called a target threefold.

Since we are discussing only Type A Calabi-Yau threefolds in this section, we will abbreviate a
(pre-)C.Y. group of Type A to a (pre-)C.Y. group throughout this section, as long as no potential
confusion exists.

Remark 4.4. We remark here that in positive characteristics, the condition (4) does not always imply
on the quotient X = B/G, we have H*(X,Ox) = 0, as G might fail to be linearly reductive when |G|
is divisible by p. Nevertheless, we have still the injection H'(B,Op)“ — H'(X,Ox) by Proposition
2.38, so condition (4) is essential for B/G being Calabi-Yau. We will see later that the possible groups
satisfying condition (1) - (4) have only prime factor 2 in the order, hence are linearly reductive when
p> 2.

For a group variety X, as the case in differential geometry for Lie groups, the tangent space Ty X at the
identity point 0 € X has a Lie algebra structure, and can be identified as H(X, T ), the global vector
fields of X. Over the complex numbers, any abelian variety B is a complex torus, and is isomorphic
to its Lie algebra modulo a lattice H°(B,Tg)/I". Suppose we are given a group action G~ B on the
torus, then for each g € G, the corresponding automorphism ¢ : B — B can be decomposed into to gy,
where ¢ is a translation and gg is a homomorphism of abelian varieties. The homomorphism gy induces
then a Lie algebra endomorphism TyB — Ty B, and hence is naturally called the Lie part of ¢g. In the
case of positive characteristics, it is in general not true that an abelian variety can be expressed in the
form of a torus. Nevertheless, the decomposition g = togg into a translation and a homomorphism still
exists, and gg also acts on the Lie algebra TyB. For more naturality in algebra, we consider the action
of go on H'(B,Op) via pullback, which is the same as the action of g on H'(B,Op) via pullback,
instead of the action of gy on Ty B. The cost is that the induced representation of G on H 1(B, Op)
is a right representation. So to keep the notations consistent to conventions in representation theory,
we take the dual H'(B,Op)Y and consider the left representation of G on it.

Definition 4.5. The induced representation G ~ H'(B,0pg)" is called the Lie representation of
G.

In this section, we aim to prove

Theorem 4.6. Let k be a perfect field of characteristic p > 2. Let X be a weakly ordinary Calabi-Yau
threefold of Type A over k, and let B — X be its minimal cover. Then X = B/G for a C.Y. group G
of Type A, and the pair (B,G) is one of the following two cases:
(1) B = (Ey x By x E3)/A, where E; are ordinary elliptic curves and A is a finite subgroup of
E1 x By x E3, G = (a|la®> = 1) @ (b|b*> = 1) = C2, and its Lie representation is

1 0 0 -1 0 0
a— [0 -1 0 f,b=0 1 0
0 0 -1 0 0 —1

with respect to a basis of H' (B, Op)V given by the product Ey x Ey x Es.
(2) B = (E1 X Eyx E9)/A, where E1 and Es are ordinary elliptic curves and A is a finite subgroup
of By x By x By, G = (a,bla* = b* = abab = 1) = Dg, and its Lie representation is

10 0 10 0
a— |00 1], 6|0 1 0
01 0 0 0 -1

with respect to a basis of H'(B,Op)V given by the product By x Ey x Es.
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Moreover, both cases indeed exist.

Remark 4.7. If f : B’ — B is an isogeny, then the pullback on the first sheaf cohomology f* :
HY(B,0p) — H'(B',0p/) is an isomorphism. In the settings of Theorem 4.6, the domain B’
Ey1 x Ey x Ej is isogenous to a product of elliptic curves. By Kiinneth formula, H'(By, Op,)
@ | H(E;,Og,). Since H'(E;,Op,) is one-dimensional, this gives a basis of H'(B,Og), unique
up to scalars in each basis vector. We also remark that in case (2), the matrix form of the Lie
representation will be eventually different if one scalars the two basis vectors given by Fs by different
coefficients. In the proof, we will construct explicitly an isomorphism between the two Fs components
via the Dg action on B, and the two basis vectors are assumed to be chosen to be compatible along
the isomorphism.

iR 2

By a theorem of canonical lifts to characteristic 0 ([MS87, Appendix Theorem 1]), it is immediate
that the result in Theorem 4.6 must agree with the parallel result over C proved in [OS01]. We will
prove the result through a purely algebraic approach. We start by several simple observations.

Lemma 4.8. If G is a pre-C.Y. group, then so is any subgroup of G. Equivalently, if G contains a
non-pre-C. Y. group, then G is not a pre-C.Y. group.

Proof. 1t follows directly from Definition 4.3. ]
Lemma 4.9. If B is a target abelian threefold, then B is ordinary.

Proof. The quotient B/G is globally F-split by assumption, and we can use [PZ20, Lemma 11.1] to
deduce that B is globally F-split as well. By Lemma 2.6, B is weakly ordinary. Then by Proposiiton
2.36, B is ordinary. O

4.1. Crystalline representation of pre-C.Y. groups. Let G be a group acting on an abelian
variety B. Given any g € G and the corresponding automorphism g : B — B, the dual of the pullback
on the first crystalline cohomology ¢*V : HY(B/K)V — H'(B/K)V gives a left representation of G. We
will eventually use these representations to restrict the possible orders of a C.Y. group. Nevertheless,
most of the results in this subsection can be applied to finite group actions on (possibly non-ordinary)
abelian varieties of arbitrary dimensions.

Remark 4.10. We will deal with many automorphisms of abelian varieties in this section. To avoid
confusion, we mean by an “endomorphism” (resp. an “automorphism”) of B a morphism (resp.
an isomorphism) of schemes B — B, not necessarily fixing the identity point Op € B. And by a
“homomorphism” from Bj to Bs, we mean a morphism of group schemes B; — Bs, that is, it sends
the identity point Op, to the identity point Op,. The set of automorphisms of B is denoted Aut(B),
and the set of homomorphisms from B; to Bz is denoted Hom(Bj, B2). In particular, Hom(B, B) is
the set of endomorphisms of B which fix the identity point 0p.

To start with, we show that for a pre-C.Y. group G, the induced representation on crystalline
cohomology is faithful.

Lemma 4.11. Let By, By be abelian varieties, then the natural map

Hom(By, Bo) — Homp_ crystar (H' (B1 /W)Y, H' (Bo/W)¥) = Homp_ crystar (H' (Bo/W), H' (By /W))
18 1njective.

Proof. We have the natural identification H'(B/W) = D(B[p>]) by Proposition 2.31. By [CCO14,

Proposition 1.2.5.1], the natural map Hom(B1, B2) — Homg, (B1[p™], B2[p™°]) is injective. We have
then natural isomorphisms

Homyz,, (B1[p*], B2[p™]) = Homp(D(B2[p™]), D(B[p™])) = Homp_crystal (H' (B2/W), H' (B1/W))

where the first isomorphism is due to that the Dieudonné functor is a contravariant equivalence
(c.f. [Dem06, p. 71, Theorem]), and the second isomorphism is from Proposition 2.31. The lemma
follows. O
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Proposition 4.12. If a finite group G acts on an abelian variety B and contains no translation, then
the crystalline representation G ~ HY(B/K)" s faithful.

Proof. Assume that there is ¢ € G whose pullback action on H'(B/K) is trivial. Write g = t o go
where ¢ is a translation and g9 € Hom(B, B) is a homomorphism of abelian varieties. Since the action
of go on H'(B/K) is trivial, we obtain go is the identity homomorphism by Lemma 4.11. So g =t is
a translation, contradiction. O

Given any element g € G of finite order, the induced action g* on H'(B/K) is diagonalizable by
passing to an algebraic closure, by elementary representation theory. Our next task is to study the
eigenvalues of g*.

Proposition 4.13. Let g : B — B be an automorphism of an abelian variety B of finite order, and let
fy be the characteristic polynomial of the induced action g* on H'(B/K). Denote d = dim B. Assume
that the fized point scheme B'Y9) is finite, then length, B'9) = f,(1). In particular, if furthermore Fix(g)
is reduced, then |Fix(g)| = f4(1).

Proof. The action of g* on H'(B/K) admits a diagonalization ¢g* = diag(\1, ..., Aog) over K, where
q = dim B. By the natural isomorphism H*(B/K) = A*H'(B/K) (c.f. Proposition 2.30), the
eigenvalues of the action ¢g* on H’(B/K) are just [[;c; i, for all I C {1,...,2n},|I| = j. Now by
Lefschetz fixed point formula,

2d 2d 2d
length, BY) = "(~1)'Tx(¢*|H/ (B/K)) = Y (1)’ S I | =110 =) = f,0).
Jj=0 Jj=0 Ic{ﬁ‘,...,gn} iel i=1
=J

A proof of the Leftschetz fixed point formula for crystalline cohomology can be found in [Ber74,
Théoeme VII.3.1.6]. O

Proposition 4.14. Let go € Hom(B, B) be a homomorphism of an abelian variety B to itself, and
let g be the induced endomorphism on H'(B/K). We have an equality

deg(go) = det(gp)-

In particular, if we let mg denote the multiplication by a on B, then the characteristic polynomial
foz (T') is equal to deg(mr — go), and has rational coefficients.

Proof. The proof of [Mum?74, Theorem 4, p. 180] still applies when we replace T}B with D(B[p*])
and Q; with Q,. Then use the natural identification H'(B/K) = D(B[p™]), c.f. Proposition 2.31. O

Proposition 4.15. Let d = dim B and assume that B is ordinary. Consider the decomposition
HY(B/K) = (H(B,WOg)@w K)® (H*(B,WQkL)®@w K) given by Theorem 2.28. If the eigenvalues
of g* on H'(B,WOpg) ®@w K are A1, \a, ..., A\, counted with multiplicities, then the eigenvalues of g*
on H°(B, WQ}B) Qw K are of the form )\fl,)\gl, .. .,/\;1.

Proof. We note first that the image of ¢; : Pic(B) — H?(B/K) lies in the slope 1 part of H?(B/K),
as F*D = pD for any divisor D. The F-isocrystal H'(B,WOg) @ K is purely of slope 0 and
HY(B,WQL) @w K is purely of slope 1 by Propposition 2.36, so by the identification H*(B/K) =
A? H'(B/K) by Proposition 2.30, the image of ¢; is in (H' (B, WOg)@w K) A (H°(B, WQL) @w K).
Let £ be an ample line bundle on B/(g), and let 7 : B — B/(g) denote the natural projection, then
7L is a g-invariant ample line bundle on B. We can write ¢1(7*L) = > a;(v; Aw;) for v; an eigenbasis
of HY(B,WOp) ®w K corresponding to \;, and w; € H*(B, WQL) @y K. Then v; A w; are linearly
independent as v; are linearly independent. Since c¢;(7*L) is g-invariant, w; must be eigenvectors
corresponding to the eigenvalues \;'. Moreover, w; span HO(B,WQL) @w K as ¢1(7*£)? # 0 in
H?*(B/K). Therefore, w; form an eigenbasis of H*(B, WQk) @y K. O

Corollary 4.16. If B is ordinary, and g is of finite order and fixzed point free, then the eigenvalues
of g acting on H'(B/K) are of the form 1, 1,/\2,)\2_1, N ¥ /\;1.
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Proof. By Proposition 4.13, 1 is an eigenvalue of g*, then use Proposition 4.15. ]

Proposition 4.17. If B is ordinary and g is of finite order, then the action g* is identity on HY(B,wpg)
if and only if the determinant of the action of g* on H'(B,WOp) is 1.

Proof. If the determinant of g* is 1 on H'(B, WOp) ®w K, then by Lemma 2.37, the action g* on the
one-dimensional space H d(B, WOpg) @w K is the identity, where d = dim B. Lemma 2.33 gives an
injection H4(B,WOg)/VHYB,W0Og) — H%B,Op), which is an isomorphism here by a comparison
on dimensions. Therefore, the action g* on H%(B, Op) is identity, and so is g* on H°(B,wg) by duality.
Conversely we assume that the action ¢* is identity on H°(B,wp), then the action is also identity on
H%(B,0p). The action g* on HY(B,WOp) is then multiplication by ¢, an ord(g)-th root of unity in
W (k). The residue of ¢ in k is 1, due to the isomorphism HY(B,WOpg)/VHY(B,WOg) = H4B,Op).
We need the following claim:
Claim: Assume p > 2. The only p°-th root of unity in W (k) is 1.
Proof of claim: By induction it suffices to check the case s = 1. Assume z = (1, x9,x3,...) is another
p-th root of unity. Write x = 14 p" -y such that y # 0 is not p-divisible. Then 1 = 2P = (1+p" - y)P =
1+ p"tly +p**L. f(y) for some polynomial f, assuming p > 2. Hence y = p” - f(y) and is p-divisible,
contradicting to our assumption, so y = 0. |
Write ord(g) = p” - n for n non-divisible by p. By the claim, we see (" = 1. So ( is an n-th root of
unity in W (k) whose residue is 1, then ¢ = 1 by Hensel’s lemma. By Lemma 2.37, the determinant of
g* on HY(B,WOpg) @w K is precisely ¢ = 1, proving the claim. O

Due to Proposition 4.15, we have also

Corollary 4.18. If B is ordinary and g is of finite order, then the action g* is identity on H°(B,wp)
if and only if the determinant of the action of g* on H°(B,WQL) is 1.

Proposition 4.19. Let B be an ordinary abelian threefold with a (g)-action. If g is of finite or-
der n and the (g)-action is pre-C.Y., then the eigenvalues of g* € GL(HY(B/K)) are of the form
1,1,6n, Gt Gy G Y, where G, is a primitive n-th root of unity in K.

Proof. By Corollary 4.16 and that g is of order n, it follows that the eigenvalues are of the form
1,1,¢u, ¢t G, ¢ Y, for integers w and v such that lem(u,v) = n. Consider the three eigenvalues on
H'(B,WOg), one has four possibilities up to replacing the primitive roots of unitiy with another one:
(1) 1, ¢y, ¢ By Proposition 4.17, it follows that ¢, = ¢, ! and the proposition is readily verified.
(2) 1,1, ¢y,: By Proposition 4.17, we must have u = 1. Then by Proposition 4.15, all the eigenvalues
are 1.
(3) 1,Cu, ¢ By Proposition 4.15, we get ¢, = (, or {, = ¢t
(4) Cu, ¢t Co: By Proposition 4.17, we get ¢, = 1 and reduce this case to case (3) above.

In particular, the proof shows also

Corollary 4.20. The eigenvalues of g* on H'(B,WOg) @w K (resp. H*(B,WQL) @w K) are of
the form 1,(n, Gt

Lemma 4.21. Preserving the settings above, the characteristic polynomial fg« go1 of the g*-action
on HY(B,WOg) @w K has rational coefficients.

Proof. Let fg« be the characteristic polynomial of g* on H'(B/K), then fy = 5*’ o by Corollary
4.20. By Proposition 4.14, f,« has rational coefficients. So it suffices to show that if f = h?, and h
is monic and has rational coefficients, then h has rational coefficients as well. Write h = Zé:o a; T,
and assume that j is the largest index such that a; is not rational. Since g is monic, j < I. Then the
coefficient of 7'/ in f is Zi:j ;04— = Zi:jﬂ a;Qy4j—; + 2aj, which is a sum of a rational and an
irrational number. This yields a contradiction. O
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4.2. Classification of (pre-)C.Y. groups. Using the result on representations of a cyclic pre-C.Y.
group on the first crystalline cohomology in the last section, we can now determine the precise possible
orders of elements in a pre-C.Y. group, and classify all (pre-)C.Y. groups. Many ideas in the whole
classification are from [OS01], but their proofs rely pretty much on complex geometry settings, and
we reformulate the proofs using purely algebraic techniques.

Proposition 4.22. Let (g) be a cyclic pre-C.Y. group acting on a target threefold B. Then ord(g) €
{1,2,3,4,6}.

Proof. Combining Corollary 4.20 and Lemma 4.21, we see that a primitive ord(g)-th root of unity has
degree at most 2 over Q. O

Proposition 4.23. Let G be an abelian pre-C.Y. group, then G is isomorphic to either Cy x Coy or
C, forn=1,2,3,4,6.

Proof. Let B be a target threefold. Consider the representation of G on H'(B, WOpg)" @w K, which
is faithful by Corollary 4.20. There exists a basis under which the representation is diagonalized. We
know that up to isomorphism, G can be written as C,, X --- x Cy, such that n;|n;1i. If G is cyclic,
then the result follows from Proposition 4.22. If GG is not cyclic, pick the generators a of C),, and b
of Cp,. Again by Corollary 4.20 the eigenvalues of a (resp. of b) are 1,§n1,§;11 (resp. 1,§n2,C,{21).
We have only two possibilities on the matrix forms of a and b up to an reordering of the basis and
replacing ¢, by C;;:

(1) a = diag(1,¢py, G )t), b = diag(l, Gny, G)1): Tt follows that b generates a as ni|ng, a contradic-
tion.

(2) a = diag(1, Cm,%l)a b = diag(Cn,, 1, 47721): Consider ab = diag(Cny, Cny s ($nyGnp) ™). By Corol-
lary 4.20, we must have (,, = (;'. Then consider a®b = diag(¢,',¢2,.¢y ). Again by
Corollary 4.20, we must have (,2” =1 and n; = ng = 2. In this case, a = diag(1,—1,—-1),b =
diag(—1,1,—1). If there is a third independent generator ¢ of C,,,, one can show similarly that
¢ = diag(—1,—1,1), but then ¢ = ab, so this is impossible and we have already G = Cy x Cs.

d

Recall that by definition, a C.Y. group is just a pre-C.Y. group G whose action on H'(B, Op) does
not fix any non-zero vector. The following proposition is then immediate.

Proposition 4.24. Assume p > 2. The pre-C.Y. group Cy x Cy is C.Y. for any target threefold B,
and the pre-C.Y. group C,, is never C.Y. for any target threefold

Proof. The injection H'(B,WOg)/VH'(B,W0Opg) «— H'(B,Op) given by Lemma 2.33 is natural
and hence equivariant for any group action. By a comparison on ranks, the injection is in fact an
isomorphism. We can check then directly that H'(B,Op)“2*“2 = 0 (resp. H'(B,0p)%" # 0) using
the explicit description of the action on H'(B, WOpg)V in the proof of Proposition 4.23. O

In order to pass to non-abelian C.Y. groups, we recall a theorem by Hall on finite groups.

Theorem 4.25 (Hall). Let q be a prime number, and let G be a q-group of order ¢". If H is a

mazximal abelian subgroup of G and has order q", thenn < h(h2+1)'

Proof. See e.g. [Hup67, Satz I11.7.3]. O

Corollary 4.26. Let G be a pre-C.Y. group, then ord(G) = 23° for 0 < a < 3,0 < b < 1. In
particular, ord(G) € {1,2,3,4,6,8,12,24}.

Proof. By Lemma 4.8, any Sylow g¢-group is pre-C.Y., hence we can conclude with Proposition 4.23
and Theorem 4.25. O

Let B be a target threefold of G. Our next step is to study the three-dimensional representation of
G on HY(B,WOpg)" @w K via explicit classifications of irreducible representations of groups of small
orders. The assumption we have for a C.Y. group is that H'(B,0p)“ = (H'(B,0p)")¢ = 0, but we
will mainly work on HY(B,WOpg)V,(HY(B,WOp)") @w K and (H(B,WOp)") @w K, so we need
the following lemmas on comparing the invariant subspaces of related representations:
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Lemma 4.27. Let R be a ring, M a free module over R, and let G ~ M be an R-linear representation
of a finite group G. Given a flat R-algebra R', and consider the induced R'-linear representation
G M®g R We have rankp MC = rankp (V ®pr R')G.

Lemma 4.28. Let M be a free W-module of finite rank, and let G ~ M be a W-linear represen-
tation of a finite group G. Then G descends to an action on M/V M, and we have ranky ME <
dimyy vy (M/VM)C.

Proof. Choose a basis v; of M. The vectors v; are not p-divisible in M, as if we have a w; such
that v; = p - wj, then w; is fixed by G as well, contradicting to the assumption that v; are a basis.
Therefore the quotient classes 7; in M /V M are non-zero. We claim that they are linearly independent
in (M/VM)%. Assume that we have a relation >, @ - 7; = 0 in M/V M. Pick preimages a; of @; in
M, then ), a;v; € VM = pM. Now ). a;v; is G-invariant, and p-divisible, and therefore %ZZ a;v; 1s
also G-invariant. Since v; are a basis of M G, we can write % >, aivi = Y bjv;, but this means precisely
that a; = pb; and hence @; = 0. O

If G acts on an abelian variety B, then we have a left representation G° ~ H'(B,Opg). The
lemmas above shows inparticular that if H'(B,Op)%" = 0, then H'(B,W0Og)®" = 0, hence
(HY(B,WOg)¥)¢ = 0 as well, hence dimg(H'(B,WOp)" @w K)¢ = dimyx(H'(B,WOp)"
K)¢ = ranky (H' (B, WOpg)V)¢ = 0. Therefore
Lemma 4.29. If G is a C.Y. group acting on a target threefold B, then ranky (H'(B,W0Op)V)¢ =
dimp (HY(B,WOg)" @w K)¢ = dimz(H (B, WOg)" @w K)¢ = 0.

Moreover, we will frequently consider the invariant subscheme of an action on an abelian variety B,
in the following setting: Let g be a homomorphism g : B — B of finite order, that is, g has finite order
as an automorphism of B. Let n = ord(g). Consider the maximal abelian subvariety of Ker(g — Id),
denoted with E, or equivalently, F is the reduction of the identity component of Ker(g — Id).

Lemma 4.30. In the above setting, we have also E =Im(¢g" ' + ¢" 2 4 --- + g + 1d).

Proof. Indeed, it is clear that Im(¢"~! + ¢" 2+ ---+ g +1d) C E, and for the converse inclusion, it
suffices to check on k-rational points. Given o € E(k), one can find o/ € E(k) such that n- o = a,
and then ¢g" (/) + ¢ 2(/) + -+ g(d)+ o' =n-d =a. O

The dual of pullback (g"~ '+ ¢" 2 +--- 4 g+ 1d)*V acts on the dual crystalline cohomology group
H'(B/K)V. The following lemma turns out to be helpful:

Lemma 4.31. In the above setting, we have dim E = %rank ((g’“1 +g" 24t g+ Id)*v), and
the natural embedding ¢ : E < B induces again a map *¥ : HY(E/K)V — HY(B/K)Y, which is
injective and whose image is precisely (H'(B/K)Y){9).

n—1 4

Proof. The homomorphism 37"} ¢ : B — B induces a morphism of p-divisible groups (EZ 0 9 ) [p™] :

B[p™] — B[p*°], hence also a map of Dieudonné modules (Z? 01 g’) : D(B[p™*]) — D(B[p*]), and
*V

hence a map of dual crystalline cohomology (Zl 09 ) : HY(B/W)V — HY(B/W)Y. All the three

functors used above are exact, and respects the Hom(B, B)-structure on the objects, hence we have
n—1 A v n—1 *V n—1 )
HYE/K)' = H! (Im (Z g’) /K) = Im (Z g’) =Im (Z (g*v)’> c HY(B/K)".
i=0 i=0 i=0

*V
Therefore, we have dim E = 3 L rank (ZZ’ 01 gz> , showing the first claim. For the second claim, we

note first that E[p™] — B[p™] being injective implies D(B[p*>]) — D(E[p>]) is surjective, as D is an
anti-equivalence between the category of p-divisible groups and the category of Dieudonné modules
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over W. Therefore by Proposition 2.31, the map «* : H'(B/K) — H'(E/K) is surjective, and hence
the dual *V : HY(E/K)V — H'(B/K)V is injective. Consider then the following diagram:

E—— B
Sy
E—— B

where m,, is multiplication by n. The diagram is commutative since g acts as Id on F. The corre-
sponding diagram on the dual crystalline cohomology is

HYE/K)Y <5 HY(B/K)"

diag(n,...,n)l l(zlnz—ol gi)*\/
HYE/K)" —~ H'(B/K)",

which shows that the image of (*V lies in the eigenspace of (E? 01 gl) of the eigenvalue n. Since
*V
the eigenvalues of g*V are n-th roots of unity, we see that (Z?—ol g’) has only eigenvalues n or 0,

A *V
where the (Z?;Ol gz> -eigenspace of eigenvalue n is precisely the ¢g*V-eigenspace of eigenvalue 1, and

*V
the (Ef 01 g’) -eigenspace of eigenvalue 0 is the direct sum of the g*V-eigenspaces of eigenvalues not

*V
equal to 1. As dim E = 3 rank (E? 01 g’) , the dimension of H'(E/K)Y agrees with the dimension

*V
of the <Z?:_0 gl> -eigenspace of eigenvalue n, which is the same as the g*V-invariant subspace, and

the claim is proved. O

We start by classifying (pre-)C.Y. groups of order < 12. We can consider abelian subgroups of
all non-abelian groups of the orders mentioned in Corollary 4.26, a list of which can be found in
[CM84, Table 1]. By Lemma 4.8, subgroups of pre-C.Y. groups are again pre-C.Y., so we can exclude
many cases using Proposition 4.23, and obtain

Proposition 4.32. If G is a non-abelian pre-C.Y. group of order < 12, then G is isomorphic to one
of the groups Dg, Ds, Qs, D12, Q12, A4.

The full character tables of the groups appearing in Proposition 4.32 can be found in [Led87], with
a navigation list on page 205. One can easily check that the characters correspond to the following
irreducible representations:

Proposition 4.33. Let (, denote a primitive n-th root of unity. Up to equivalence, the complex
irreducible (left) representations of Day, Qs, Q12 and Ay over are given as follows:
(Do) Dsy, = (a,bla™ = b* = abab = 1) with n =0 (mod 2):
(1) pl,ota'—>1, b—1; P11 ca—1, b— —1; p1’2:a|—>—1, b—1; p1,3:ar—>—1, b— —1;

k
(2) pgyk:ar—><%‘ Cgk)’bH<(1) (1)), for1<k <% —

(D1) Dsy, = (a,bla™ = b*> = abab = 1) with n =1 (mod 2):
(1) pro:a—1,b—1; prp:a—1, b— —1;
(2) ,02;c:czb—><di 0) bi—>(0 1) for1 <k <ozl
) 0 Cgk ) 1 0/ =V =2
(Qs) Qs = (a,bla* =1, a>=0% b~ lab=a"'):
(1) p1,0:a|—>1, b—1; p1,1:a+—>1, b— —1; p1,2:a|—>—1, b—1; p1,3:a+—>—1, b— —1;

. G 0 0 (4
(2) pg,o.ar—><0 <4>,b'—>(C4 0).
(Q12) Q12 = (a,bla’ =1, a® =%, b~ lab=a"1):
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(1) pro:a—1,b—1, p1g:a—1, b— -1 pro:a— —1, b— {3 pr3:a— —1, b—

—C4;
G 0 0 G
2 : _ b ;
( ) :02,0 a'_)<0 CGI)’ H<C4 O)’
. G 0 0 -1
p2,1 - a— 0 C?,_l ’ b -1 0

(Ag) Ay = (a,b) C Sy, where a = (123) and b = (12)(34):
(1) pro:a—1,b—1; prr:ar— (3 b— 1, pl’g:ar—>C3_1, b 1.

010 1 0 0
2) psza— [0 0 1], b {0 -1 0
100 0 0 -1

We start by excluding the cases Dg, D12 and Aj.
Proposition 4.34. The groups Dg and D12 are not pre-C.Y. groups.

Proof. By Lemma 4.8, it suffices to check the statement for Dg since D15 has Dg as a subgroup. Assume
that Dg = (a,bla® = b*> = abab = 1) is pre-C.Y. and let B be a target threefold. We consider the left
representation p : Dg — GL(HY(B,W0Opg)" @w K), which is faithful by Proposition 4.12. As Dg is
non-abelian, the representation p does not split into three one-dimensional irreducible representations.
So p contains the subrepresentation po 1 in Proposition 4.33. By Proposition 4.17, the image of p is in
SL(HY(B,WOg)" @w K), so the only possible decomposition is p = p; 1 @ pa,1. Pick a basis vy, v2, v3
of HY(B,WOpg)Y @ K under which p is of the form

1 0 0 -1.0 0
a0 G 0 |, b [0 01
00 G! 0 10

Denote the identity point of B with 0 and define o := a(0), := b(0). We can decompose a =
to 0 ap,b = tg o by, where t, and tg are translations on B by o and 3, and ag and by are group
homomorphisms of B to itself. Define F := Im(a% +ap+1d), which is nothing but the reduction of the
identity component of K(ﬁ(ao — Id) by Lemma 4.30. By Proposition 4.15, it follows that the action
of ag on H'(B/K)" ® K can be written as diag(1,1,¢3,¢3 ", (3,¢ "), So by Lemma 4.31, E is an
elliptic curve, and H'(E/K)V can be identified as the fixed subspace of H'(B/K)" under aj". One
can then consider the diagram

E—— B

m—1 bo

E —— B

where m_1 is just the involution on F, and the induced diagram on the dual first crystalline cohomology

v m-1=diag(-1,~1)

HY(E/K) HY(E/K)"
T*V:diag(l,l,o,o,o,o)l lT*V:diag(l,l,O,O,O,O)
HY(B/K)Y H'(B/K)Y

bV =diag(—1,—1)@--

is commutative, hence by acts as multiplication by —1 on F, by Lemma 4.11. Let A := B/E be the
quotient abelian surface and let 7 := B — A denote the natural projection. The curve F and the
surface A are ordinary as B is isogenous to A x E. We claim the following;:

Claim: The action of a and b on B descends to actions on the quotient A, i.e. for a,b € Aut(B) there
exist @, b € Aut(A) such that moa = @onm and mob = bom. Moreover, @ and b satisfy the relations of
a and b in Dg, so they define a Dg-action on A.
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Proof of claim: We construct first @.

By the universal property of categorical quotients, the unique existence of @ : S — S such that the
diagram above commutes is equivalent to that the composition 7 o a is E-invariant. Let S be any
k-scheme, and consider S-rational points = € B(S),y € E(S). We have

moa(r+y)=motyoap(r+y) (Decompose a = tq 0 ap)
m(ao(z) + ap(y) + @)  (ap is a group homomorphism)
=m(ap(x) + @+ y) (ap is identity on E)
= m(ap(x) + ) (7 is a group homomorphism, and y is in Kerm = E)
= moa(x).

So 7o a is indeed invariant under translations by any elements in E. The argument for b is similar:

mob(r+y)=motgoby(r+y)

= 7(bo(x) +bo(y) + B)
+B-y) (bo is multiplication by —1 on E)

The fact that @ and b are subject to the same relations as a and b in Dg follows from the uniqueness
of the descent of Id on B, which is just Id on A. |
The short exact sequence of p-divisible groups

1 —— E[p>®] —— B[p>®] —— APp>®] —— 1
induces a short exact sequence of Dieudonné modules
0 —— D(A[p™]) —— D(B[p>*]) —— D(E[p>*]) —— 0

since the Dieudonné functor D is an equivalence by [Dem06, p. 71, Theorem|. By Proposition 2.31,
we see that the pullback 7* : H'(A/K) — H'(B/K) is injective with cokernel H!(E/K). Since
HY (A, WO,), H(B,WOg), H' (E,WOg) are the slope 0 parts of the crystalline cohomology of the
three abelian varieties, the pullback 7* : H'(A,WO,) — H'(B,WOp) on Witt vector cohomology
is injective with cokernel H'(E, WOg). By taking duals and passing to an algebraic closure, we get
oV HY (B,WOg)' @w K — H'(A,WO4)" @w K is surjective, with kernel H'(E, WOg)" @w K.
Recall that we wrote vy, vs,v3 for a basis of H(B,WOp)" ®w K and v; spans the eigenspace of
ag with eigenvalue 1, which is noting but H*(E,WOg)" @w K. Therefore H'(A,W0.)" @w K is
spanned by 75 := 7V (v2) and T3 := 7V (v3). Decompose @ = tg o Gg and b = tzo0 by into a group
homomorphism @g : A — A and a translation by @ € A. One can check that ag (resp. bp) is indeed
the descent of ag (resp. bg) to A and @ = () (resp. S = 7(83)), so the notation does not lead to any
misunderstanding. Applying Lemma 4.11 to the diagram

ao,bo

B B

l l

A——= A,
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we are able to show that under the basis U3, U3, the representation of Dg on H 1(A, WO4)Y @w K can

be written as
_ 3 0 - 0 1
a— <0 C3_1 , b— 1 0)

By Proposition 4.15, the action of @ on H'(A/K) has eigenvalues (3,(3",(3,¢; " In particular, by
Lemma 4.31, we see the fixed point scheme A(® is finite, so we can apply the fixed point formula in
Proposition 4.13 and get length, A‘® = 9. Translating A by —(ag)~!(a) gives an isomorphism of
schemes A(@ = Ker(ag — Id). Therefore, the number of k-rational points ‘A@(lﬂ)‘ is either 1,3 or
9, where the case ’A<a>(k)| = 1 or 3 can only happen in characteristic 3. Since we have the relation
ab = b(@)~ !, the action b on A permutes the points in A@ (k). As ord(b) = 2, there exists a point
s € A9 (k) fixed by b. Set F = 7~ 1(s), then b can be restricted to an automorphism of F, as b(s) = s.
Moreover, by our construction of E and F, the action of b on H'(F/K) is of the form diag(—1, —1). By
Lezi?ma 4.31 Proposition 4.13, b admits a fixed point on F. However, this contradicts our assumption
B =1). O

Proposition 4.35. The group Ay is not a pre-C.Y. group.

Proof. Let B be a target threefold, and consider the left representation p : Ay — GL(H(B, W0Og)"@w
K). We may argue similarly as the beginning of the proof of Proposition 4.34, and see that the only
possible irreducible decomposition of p is p & ps, following the notations in Proposition 4.33. Pick a
basis v1,ve,v3 € HY(B,WOpg)" @ K such that the matrix forms of a = (123) and b = (12)(34) are
the same as in Proposition 4.33:

010 1 0 0
a— |0 0 1}),b—~ |0 =1 O
1 00 0 0 -1
We can also easily compute the matrix forms of the following elements:
-1 0 0 -1 0 0
a’ba— | 0 1 0 ],aba®?—= |0 -1 0
0 0 -1 0 0 1

Let 0 be the identity point of B. Define a := a(0), := b(0), then we have decompositions a =
to 0 ap and b = tg o by, where t, and tg are translations on B by a and 3, and ag and by are
group homomorphisms of B to itself. Define E; := Im(by + Id), B> := Im(a3bpao + Id) and Ej :=
Im(aoboag + Id). By Lemma 4.30, we know that E; (resp. FEa, resp. Es3) is also the reduction of the
identity component of Ker(by—1Id) (resp. Ker(agbpao—1d), resp. Ker(agbpad —1d)). Moreover, ag sends
FEq to E3, sends E3 to Fo and sends Es to Eq, so Fq, o, B3 are abstractly isomorphic to each other.
By Lemma 4.31 and Lemma 4.27, we have dim Fy = 3(HY(B/K)")® = L(HY(B/W)Y ow K)® = 1.
So Fj is an elliptic curve and is fixed by bg. Since ag permutes E;, we see that Fs is an elliptic
curve fixed under the action agboao and Fj3 is an elliptic curve fixed under the action of aoboa%. Let
t; : E; — B be the natural embeddings, then by Lemma 4.31, under a suitable choice of bases, the
dual of pullback ¢* : H'(E;/K)" — H'(B/K)Y on dual crystalline cohomology can be written in
matrix form

OO OO O
OO OO+~ O
SO O+~ OO
OO = OOO

o o oo
_ o oo oo

0

Let us consider the morphism 7 : Ey X Ey x E3 — B, (a,b,c) — t1(a) + ¢t1(b) + ¢t1(c). Identifying
HY(Fy x By x E3/K)V = HYE,/K)" & HY(Ey/K)Y @ H'(E3/K)V using Kiinneth formula and
taking the same bases as above, the dual of pullback 7*V : H'(E; x Ey x E3/K)V — HY(B/K)"
is just diag(1,1,1,1,1,1) in matrix form. So by Proposition 2.30, the pullback 7* : H5(B/K) —
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HS(E| x Ey x E3/K) on the top crystalline cohomology is identity, which shows that 7 is an isogeny.
Let A C Ey x Ey x E3 be the kernel of 7. Pick & := (a1, az,a3) € 771 (a), B := (81, B2, B3) € 7~ 1(B),
and define two automorphisms Ey X Ey X B3 — E; X Ey x E3:

a(x1, 9, x3) = (T2, 23, 1) + (o1, 2, 3), b(x1, 22, 23) = (1, —22, —23) + (B1, B2, £3).

Claim: We have roda =aom and mob=bo .
Proof of claim: We show the case for a only, and the proof of b is identical. Define ag : F1 X Fo X F3 —
Ey X Ey x E3, (x1,x9,x3) — (x2,x3,21). Consider the following diagram

E1><E2><E3&—>E1><E2><E3T>E1><E2><E3

@

0
Wl lw lw
B » B » B.

ao tor

The commutativity of the right square follows directly from the choice of &. For the commutativity
of the left square, we note that the dual of pullback action (ag)* on H'(E; x Fy x E3/K)V is
010
ag¥ =10 0 1]. So the commutativity follows from Lemma 4.11. [ |
1 00
A direct computation shows that @3(z) = a3(&) + ao(&@) + &. Since a® = Id and therefore @® is a
translation in A, we get a3(&)+ao(&)+a € A. If we write ax. = a1 +as+as, then a computation shows
that a2(@) + do(@) + @ = (ax, ax, as). Another computation shows b~! o t(as,as,as) © b(x1,x0, 23) =
(71,22, 73)+(ax, —ax, —ax). Since (ax, ax, ax) € A and b~lob = Id, we get also (ax, —ax, —ax) € A
and hence (ay, ay,ay) + (an, —axn, —ax) = (2ax,0,0) € A. Then we may compute

3

&2(0, ag + ag, a1 + ag + 2a3) = alag + as + az, aq + 200 + 23, a3)
= (201 + 202 + 2a3, 9 + a3, a1 + ag + 2a3)
= (0,2 + a3, a1 + az + 2a3) + (2ax,0,0).

Therefore, a?(7 (0, ag+as, a1 +as+2a3)) = 7a%(0, ag+as, a1 +as+2a3) = 7(0, ag+as, oy +az+2as3),
and this contradicts our assumption that a is fixed point free. O

As a result, we reduce the possible classes of a pre-C.Y. group to Dg, Qs and 12, when the order
is < 12. Arguing similarly to the beginning of the proof of Proposition 4.34, we get

Proposition 4.36. Let G be a non-abelian pre-C.Y. group isomorphic to Dg,Qg or Q12, and let B
be a target threefold. Then using the notations in Proposition 4.33, the irreducible decomposition of
the induced representation p : G — GL(HY(B,WOg)" @w K) is

(1) p=p11®p21, if G = Dg;

(2) p= 10D p21, if G=Qs;

(3) p=p10®p21, if G= Q2.

Proof. Since Dg, Qs, Q12 are non-abelian and their representation on H(B, WOpg)"®@w K is faithful by
Proposition 4.12, we get that the representation p does not split into three one-dimensional irreducible
representations. Moreover, by Proposition 4.17, the image of p lies in SL(H' (B, WOg)"®w K). Then
it is easy to check that the decompositions listed in the statement are the only possibilities. (|

Corollary 4.37. If G is a non-abelian C.Y. group of order < 12, then G = Ds.

Proof. In the cases G = Qg or G = @12, we have dim(H'(B,WOp)" @w K)¥ = 1, which is
contradictory to Lemma 4.29. O

It remains to classify possible C.Y. groups of order 24. It turns out that there is none:

Proposition 4.38. Let G be a group of order 24, then G is not a C.Y. group.
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The proof is based on the following classification of groups of order 24 categorized by their 2-
Sylow subgroups. A proof can be found on [Burl2, p. 115-120], and we follow the notations in
[OS01, Proposition 2.16].

Proposition 4.39. Let G be a group of order 24, and let H be a 2-Sylow subgroup of G. Then H is
isomorphic to one of Cs,Cay x Cy,C3, Dg, Qs, and G is isomorphic to one of the following 15 groups
according to the isomorphism class of H :

(I) H = (a) = C:

(Il) G = <c> X (a> = (O3 x Cy;
(I2) G = {(c,a) = C3 x Cs, where alca = c71.
(II) H = (a,b> = Cy®Cy:
(1) G ={c) x (a,b) = C5 x (C2 ® Cy);
(ILz) G = {c,a,b) = C3 x (Cy ® Cy), where a'ca =c and b='cb = c7;
(II3) G = (c,a,b) = C3 x (Cy ® Cy), where a~tca =c~! and b=1cb = c.
(II1) H = (a1, az,a3) = CF>:
(III ) G = <C> X (al,ag,(Ig) = 03 X 0593;
(I115) G = {(a1,a2,a3,¢) = 0593 x Cs, where ¢ tajc = a1, ¢ tase = a3, ¢ lasc = asas;
(I1I3) G = (c,a1,az,a3) = C3 x CF3, where al_lcal =c, az_lcag =c, aglcag =c 1
(IV) H={(a,b|a*=1, a®> =% b tab=a"') = Qs:
(IV1) G = {c) x {a,b) = C3 x Qg;
(IVa) G = {(a,b,c) = Qg x C3, where ¢ tac = b, ¢~ 'bc = ab;
(IV3) G = {(c,a,b) = C3 x Qg, where a~'ca=c, b~teb=c1.
(V) H={(a,b|a*=1, b¥>* =1, bab = a~') = Dg:
(Vl)G=<C ><< b) C3><D8,
(Vo) G = {¢,a,b) = C3 x Dg, where a”‘ca =c¢, b=tcb=c7!;
(V3) G = {¢,a,b) = C3 x Dg, where a”‘ca =c7 ', b=teb = ¢;
(Vi) G = Sy.

Proof of Proposition 4.38. Let B be a target threefold. In the cases (I),([I) and (III), the Sylow
subgroup H is an abelian group of order 8, and H is pre-C.Y. by Lemma 4.8. This contradicts
Proposition 4.23. In the cases (IV1), (IV3), (V1), (Va), the subgroup in G generated by a, ¢ is isomorphic
to Ch2, which again contradicts Proposition 4.23. In the case (V}), the group G contains a subgroup
isomorphic to A4, which contradicts Proposition 4.35.

It remains to consider the cases (IV2) and (V3). We deal first with the case (IV32). Consider the
representation py of H on H'(B,WOpg)" @w K. Since H = Qg, the irreducible representation of py
is p1,0 @ p2,1 under the notations in Proposition 4.33, by Proposition 4.36. Let V; be the subspace
corresponding to pj o and let = be a basis vector of Vi. Then a(c(x)) = ¢(b(z)) = ¢(z) since ac = cb,
so c(z) is an eigenvector of the action a with eigenvalue 1, hence is in Vj. This shows that V; is
G-stable. Take V5 to be a G-stable complement of V7, then under a suitable choice of basis of V5, the
representation of G on H'(B,WOpg)" @w K is of the form

1 0 O 1 0 0 o 0
a— |0 ¢ 0 |,b— |0 0 ,cr—)(o C’)’
0 0 —G 0 ¢ O

where C is a 2 x 2 matrix. Since c is of order 3, it has three eigenvalues 1, (3, (3 by Corollary 4.20.
If o = 1, then Vj is G-invariant and this contradicts Lemma 4.29. So o = (3 or (3, and by possibly
replacing ¢ with ¢~! we may assume o = (3. So C has now eigenvalues 1 and Cg. Then the group

element a’c acts as (g _OC) and has no eigenvalue 1, contradicting Corollary 4.20.

We treat then the case (V3). We consider again the representation py of H on HY(B,WOpg)"@w K.
Now H = Dg and Proposition 4.36 implies that pg = p11 @ p2,1 under the notations in Proposition
4.33. Let V; be the invariant subspace under ¢, which is one-dimensional by Corollary 4.20. Since
ca = ac™! and cb = be, we see that V) is G-stable. Let V5 be a G-stable complement of Vi, then V; is
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the subspace corresponding to p1,1 and V5 is the subspace corresponding to p2 1. By a suitable choice
of bases of V; and V3, the representation of G on H'(B,WOpg)" @ K is of the form

1 0 0 -1 0 0 10
a—~ |0 ¢ 0 |,b—~| 0 0 1 ,cn—)(o C)’
0 0 —( 0 10

_01 C[’)T>’ and has order 2 by Corollary
4.20. However, the group element bc has order 6, a contradiction.

where C is a 2 x 2 matrix. So the action of bc is of the form (

Proof of Theorem 4.6. Through the discussion of this section, we see that the only possible C.Y.
groups are Cy x Co and Dg. First, let G be (a) x (b) =2 Cy x C and let B be a target threefold of G.
By the proof of Proposition 4.23, the representation of G on H'(B,WOpg)" @ K is of the form

1 0 0 -1 0 0
a0 =1 0], b=[0 1 0
0 0 -1 0 0 -1

under a suitable choice of basis. Then by Proposition 4.15, the representation of G on H'(B/K)V is
a — diag(1,1,-1,-1,—-1,—1),b — diag(—1,—1,1,1,—1,—1). Decompose a = t, 0 ag and b = tg o by
such that ¢, and tg are translations by a and 3, and ag and by are group homomorphisms. Define
E, :=TIm(ag + 1d), Es := Im(by + Id) and E5 := Im(agby + Id). We see then E; (resp. Es, resp. Ej3)
is the reduction of the identity component of Ker(ag — Id) (resp. Ker(bg — Id), resp. Ker(agby — Id))
by Lemma 4.30. It follows then dim F; = %raurlk(Hl(B/K)V)@> = 1 by Lemma 4.31, and similarly
dim F, = dim F3 = 1. Let ¢; : E; — B be the natural embeddings, then under a suitable choice
of bases of H'(E;/K)V, the dual of the pullbacks iV : HY(E;/K)" — HY(B/K)V on crystalline
cohomology can be written in matrix form

10 0 0 0 0
0 1 0 0 0 0
. ool . 10l ., oo
“=1o o2 1o 1”3 [0 0
0 0 0 0 10
0 0 0 0 0 1

Consider the morphism 7 : By x Ey x E3 — B, (a,b,c) — t1(a) + t1(b) + t1(c). By Kiinneth formula,
we have H(E; x By x E3/K)V =2 HY(E,/K)" ® HY(Ey/K)V @ H (E3/K)V. So taking the same basis
as above, the dual of pullback 7*V : HY(E} x By x E3/K)V — HY(B/K)V is just diag(1,1,1,1,1,1) in
matrix form. So by Proposition 2.30, the pullback 7* : H%(B/K) — HS(E; x Fy x F3/K) on the top
crystalline cohomology is identity. Hence 7 is an isogeny. As readily mentioned in Proposition 4.24,
the fact that the representation of G on H'(B,Og)V is of the same form follows from the fact that
the injection H'(B,WOg)/VHY(B,W0Og) — H'(B,0p) in Lemma 2.33 is an isomorphism, and is
equivariant under any automorphism. One can then simply check that the constraint H'(B,Op)% =0
holds in this case. Moreover, as we assume p > 2, the group Cs x Cs is linearly reductive, hence by
Corollary 2.39, the quotient B/G satisfies H'(B/G,0p /) = 0.

The proof of case G = (a, bla* = b> = abab = 1) = Dy is identical, by setting E1 := Im(ap+Id), By :=
Im(bo + Id) and E3 := Im(agboag 1y Id). Moreover, E5 and E3 are isomorphic as ag sends Fy to Fs.

It remains to construct examples for both cases:

Ezample 4.40 (c.f. also [OS01, Example 2.17]). Let Ey, E2 and E3 be elliptic curves. Pick non-zero
2-torsion points 71 € E1[2]\{0}, 2 € E2[2]\{0}, 3 € E3[2]\{0} on each curve. Define on F; x Ey X Ej3
automorphisms

a(x1, w2, 73) = (1 + 71, =72, —T3), b(71,T2,73) = (71,22 + T2, —T3 + T3).

Then a and b are of order 2, and ab = ba. Hence (a, b) defines an action of Cy x Cy on Ej X Ey X Ej,
and it is easy to check that this action makes Cy x Cy a C.Y. group.
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Ezample 4.41 (c.f. also [OS01, Example 2.18]). Let E; and E» be elliptic curves. Pick a 4-torsion
point 71 € Ej[4]\E1[2] on E; which is not 2-torsion, and pick two distinct non-zero 2-torsion points
T2, 73 € F2[2]\{0}. Define on E; x Ey x E3 automorphisms

a(xy,x2,23) = (1 + 71, —23,22), b(x1,22,23) = (—21,22 + T2, —T3 + T3).

Let 7 denote the point (0,75 + 73). We see then a* = b? = Id, abab = t,, at, = t;a and bt, = t.b. So a
and b descends to automorphisms on Fj X Fy x Ey/(t;) and defines a Dg action on it, which is easily
verified to be a C.Y. action.
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