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Einleitung

In dieser These untersuchen wir eine alte folklore Vermutung in der Schnittthe-
orie auf Flächen, die unter dem Namen Beschränkte Negativität Vermutung
bekannt ist. Die präzise Formulierung lautet wie folgt:

Vermutung (Beschränkte Negativität Vermutung). Für jede glatte projekt-
ive Fläche X existiert eine Zahl b(X), sodass C2 ≥ b(X) für alle irreduziblen
reduzierten Kurven C auf X.

Wir bemerken dass die Zahl b von X abhängt. Es existiert keine uni-
verselle Schranke für alle Flächen. Zum Beispiel können wir eine glatte
Kurve C auf X nehmen und beliebig viele Punkte auf C aufblasen. Damit
erhalten wir eine strikte Transformierte von mit einem beliebigen negativen
Selbstschnitt. Wenn die Vermutung für eine Fläche X gilt, sagen wir dass
X beschränkte Negativität besitzt.
Bis jetzt ist kein Gegenbeispiel in Charakteristik 0 bekannt. In Charakter-
istik p lässt sich ein Gegenbeispiel durch den Frobenius Morphismus kon-
struieren.

Proposition 1.1 ([Har77, Exercise V.1.10]). Sei C eine glatte projektive
Kurve über einem Körper k mit Charakteristik p. Wir betrachten den En-
domorphismus Γ := Id × F auf dem Produkt C × C, wobei F der p-Potenz
Frobenius Morphismus C → C ist. Sei ∆ die diagonale Kurve auf C × C.
Dann gilt

Γn(∆) · Γn(∆) = pn(2− 2g(C)).

Insbesondere hat die Fläche C ×C keine beschränkte Negativität, wenn das
Geschlecht von C größer als 1 ist.

Es gibt drei interessante Beobachtungen in dem Gegenbeispiel. Erstens,
die Fläche C×C ist vom allgemeinen Typ. Zweitens, die Folge der Kurven,
dessen Selbstschnitt zu −∞ tendiert, wird von einem Endomorphismus der
Fläche induziert, der rein inseparabel ist. Drittens, alle Kurven in der Folge
sind isomorph als abstrakte Schemata. Diese drei Fakten motivieren uns,
die folgenden Fragen zu stellen:

1) Können wir eine Fläche von Charakteristik 0 konstruieren, die einen
surjektiven Endomorphismus, der kein Isomorphismus ist, besitzt, so-
dass die Beschränkte Negativität Vermutung nicht für diese Fläche
gilt?

2) Können wir Gegenbeispiele (in Charakteristik p) finden, wobei die
Kodaira Dimension kleiner als 2 ist?

3) Können wir Flächen konstruieren, auf denen es unendliche viele Kur-
ven von einem fixierten Geschlecht und einem fixierten Selbstschnitt
gibt?
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Außerdem interessieren wir uns dafür, ob und wie die beschränkte Negat-
ivität unter Morphismen von Flächen bewahrt wird. Es stellen sich nun auf
natürliche Weise weitere Fragen:

4) Sei X → Y ein endlicher Morphismus. Können wir die beschränkte
Negativität von X (bzw. von Y ) aus der beschränkten Negativität
von Y (bzw. von X) folgern?

5) Sei X → Y ein birationaler Morphismus, oder präziser die Aufblasung
von einem Punkt. Können wir die beschränkte Negativität von X
(bzw. von Y ) aus der beschränkten Negativität von Y (bzw. von X)
folgern?

Wir zerlegen die Inhalte in fünf Kapitel. In Kapitel 3 geben wir einige ein-
fache Resultate über die Beschränkte Negativität Vermutung. Zuerst geben
wir einen Beweis von Proposition 1.1. Dann beweisen wir, dass eine Fläche
beschränkte Negativität besitzt, wenn der anti-kanonische Divisor nef oder
Q-effektiv ist. Wir geben auch eine positive Antwort zu einer Richtung von
Frage 4 und Frage 5: Sei X → Y ein endlicher Morphismus oder die Auf-
blasung eines Punktes. Wenn X beschränkte Negativität hat, hat Y auch
beschränkte Negativität.
In Kapitel 4 untersuchen wir Frage 1. Wir folgen [Nak10] und zeigen dass
eine Fläche beschränkte Negativität besitzt, wenn die Fläche einen surjekt-
iven separablen Endomorphismus besitzt, der kein Isomorphismus ist. Weit-
erhin zeigen wir, dass eine negative Kurve im Verzweigungslokus des Endo-
morphismus liegen muss. Damit geben wir eine bessere untere Schranke für
Selbstschnitte von Kurven auf Flächen mit einem solchen Endomorphismus.
Als Korollar (Siehe auch [Fuj02]) klassifizieren wir alle Flächen mit nicht
negativer Kodaira Dimension, die einen surjektiven separablen Endomorph-
ismus besitzen, der kein Isomorphismus ist.
In Kapitel 5 folgen wir [CdB21] und konstruieren eine rationale Fläche in
Charakteristik p mit unbeschränkter Negativität. Diese Fläche ist eine Auf-
blasung von P2. Wir erklären auch den Zusammenhang zwischen dieser
Fläche und der in Proposition 1.1 konstruierten Fläche. Das Resultat hat
mehrere Korollare:

1) Es wird gezeigt dass eine Richtung von Frage 5 in Charakteristik p
nicht gilt: Sei X → Y ein birationaler Morphismus und es habe Y
beschränkte Negativität, dann muss X keine beschränkte Negativität
besitzen.

2) Da jede Fläche einen endlichen Morphismus zu P2 hat, sehen wir dass
jede Fläche in Charakteristik p eine Aufblasung besitzt, auf der die
Beschränkte Negativität Vermutung scheitert, was eine Antwort auf
Frage 2 gibt.
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3) Die Fläche ist das Pullback der Aufblasung von P2 in einem Punkt
unter einem endlichen Morphismus. Die letztere Fläche besitzt bes-
chränkte Negativität und gibt deswegen ein Gegenbeispiel zu einer
Richtung von Frage 4 in Charakteristik p: Sei X → Y ein endlicher
Morphismus und es habe Y beschränkte Negativität, dann muss X
keine beschränkte Negativität besitzen.

In Kapitel 6 untersuchen wir Frage 3. Wir folgen [BHK+13] und zeigen, dass
für alle Paare von ganzen Zahlen g ≥ 0,m ≥ g/2 + 1 eine Fläche existiert,
auf der es unendlich viele Kurven von Geschlecht g und Selbstschnitt −m
gibt. In Charakteristik 0 kann das Resultat erweitert werden für alle Paare
g ≥ 1,m ≥ 2 oder g = 0,m ≥ 1.
In Kapitel 7 geben wir einige mögliche Verallgemeinerungen der Beschränk-
ten Negativität Vermutung. In der ersten Sektion wird die Schwache Bes-
chränkte Negativität Vermutung diskutiert, die behaputet dass der Selbst-
schnitt von unten beschränkt ist, wenn wir das Geschlecht der Kurven bes-
chränken. Die Vermutung ist in Charakteristik p wegen Proposition 1.1
falsch. Wir folgen [Hao19] und beweisen die Vermutung in Charakter-
istik 0. Die zweite Sektion behandelt die Harbourne Konstanten, die einen
möglichen Ansatz zu Frage 5 bietet. Wir geben einige Beispiele dafür, wie
die Untersuchung von Harbourne Konstanten und Geradenkonfigurationen
auf Flächen verbunden sind. Die dritte Sektion führt die Gewichtete Bes-
chränkte Negativität Vermutung ein, die schwacher als die originale Vermu-
tung ist und in Verbindung zu lokalen Seshadri Konstanten steht.
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1 Introduction

In this thesis we study an old, folklore conjecture in the intersection theory
on surfaces, which is often referred to as the Bounded Negativity Conjecture.
The precise formulation is as follows.

Conjecture (Bounded Negativity Conjecture). For each smooth, project-
ive surface X, there exists a number b(X) such that C2 ≥ −b(X) for all
irreducible and reduced curves C on X.

Note that the number b depends on X. A universal bound for all surfaces
does not exist. For example, we can take a smooth curve C on X and blow
up X at an arbitrary number of distinct points that lie on C to obtain a
strict transform of arbitrarily negative self intersection. If the conjecture
holds for a certain surface X, we say that X has bounded negativity.
No counterexamples are known in characteristic 0. In characteristic p, a
simple counterexample can be constructed using the Frobenius morphism.

Proposition 1.1 ([Har77, Exercise V.1.10]). Let C be a smooth projective
curve over a field k of characteristic p. Consider the product C × C and
the endomorphism Γ := Id×F , where F is the p-power Frobenius morphism
C → C. Then, the self intersection of the image of the diagonal ∆ under
Γn is given by

Γn(∆) · Γn(∆) = pn(2− 2g(C)).

In particular, if the genus of C is larger than 1, the surface C ×C does not
have bounded negativity.

There are three interesting observations that we can make in the counter-
example. First, the surface C × C is of general type. Second, the sequence
of the curves whose self intersections tend to −∞ is induced by a surject-
ive endomorphism of the surface which is purely inseparable. Third, all the
curves in the sequence are isomorphic as abstract schemes. These three facts
motivate us to ask the following questions:

1) Can we construct a surface of characteristic 0 admitting a surjective
endomorphism that is not an isomorphism, on which the Bounded
Negativity Conjecture does not hold?

2) Can we find counterexamples (in characteristic p) of surfaces where
the Kodaira dimension is less than 2?

3) Can we construct surfaces on which there are infinitely many curves
of a fixed genus and a fixed self intersection?

Moreover, we are interested in whether and how the bounded negativity
is preserved under morphisms between surfaces. So it is natural to ask
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4) Let X → Y be a finite morphism. Can we derive the bounded neg-
ativity of X (resp. of Y ) from the bounded negativity of Y (resp. of
X)?

5) Let X → Y be a birational morphism, or more specifically, the blow
up of a point. Can we derive the bounded negativity of X (resp. of
Y ) from the bounded negativity of Y (resp. of X)?

We separate the contents into five chapters:
In Chapter 3 we state some easy results about the Bounded Negativity
Conjecture. We first give a proof of Proposition 1.1. Then, we prove that
a surface has bounded negativity if the anti-canonical divisor is nef or Q-
effective. We give also an affirmative answer to one direction of Question 4
and Question 5: If X → Y is a finite morphism or the blow up of a point
and X has bounded negativity, then Y also has bounded negativity.
In Chapter 4 we study Question 1. Following [Nak10], we show that if a
surface admits a surjective separable endomorphism that is not an isomorph-
ism, then it has bounded negativity. Furthermore, we show that a negative
curve has to be in the ramification locus of the endomorphism, and give
a finer lower bound of the self intersection of curves on surfaces with such
an endomorphism. As a corollary (See also [Fuj02]), we classify all surfaces
with non-negative Kodaira dimension admitting a surjective separable en-
domorphism that is not an isomorphism.
In Chapter 5 we follow [CdB21] and construct a rational surface in character-
istic p with unbounded negativity. The surface is constructed as a blow up
of P2. We state also the relation of this surface with the surface constructed
in Proposition 1.1. The result has several corollaries:

1) It shows that one direction of Question 5 does not hold in characteristic
p: If X → Y is a birational morphism and Y has bounded negativity,
then X may not have bounded negativity.

2) Since every surface admits a finite morphism to P2, we see that every
surface in characteristic p has a blow up on which the Bounded Neg-
ativity Conjecture fails, answering Question 2.

3) The surface is the pullback of P2 blown up at a single point under
a finite morphism. The latter surface has bounded negativity, which
gives a counterexample to one direction of Question 4 in characteristic
p: If X → Y is a finite morphism and Y has bounded negativity, then
X may not have bounded negativity.

In Chapter 6 we study Question 3. We follow [BHK+13] and show that for
any pair of integers g ≥ 0,m ≥ g/2 + 1, there exists a surface with infinitely
many curves on it of genus g and self intersection −m. In characteristic 0,
the result extends to all pairs g ≥ 1,m ≥ 2 or g = 0,m ≥ 1.
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In Chapter 7 we give some possible generalizations of the Bounded Negat-
ivity Conjecture. The first section discusses the Weak Bounded Negativity
Conjecture, which asserts that the self intersection is bounded from below
if we bound the genus of the curves that we pick on the surface. The con-
jecture is false in characteristic p by Proposition 1.1. We follow [Hao19] and
give a proof of the conjecture in characteristic 0. The second section deals
with the Harbourne constants, which gives a possible approach to Question
5. We give some examples on how the study of Harbourne constants is
related to line configurations on surfaces. The third section introduces the
Weighted Bounded Negativity Conjecture, which is weaker than the original
conjecture, and is related to the local Seshadri constants.

Notation:

We work over an algebraically closed field k unless explicitly mentioned oth-
erwise. A surface or a single curve will always be smooth projective unless
mentioned otherwise. A curve on a surface denotes an effective divisor on
the surface, so it might be singular, reducible or non-reduced. By a negative
curve we mean an irreducible and reduced curve with negative self intersec-
tion on a surface. By a (−1)-curve we mean a curve isomorphic to P1 and
having self intersection −1. The letter p denotes always a positive prime
number when used as the characteristic of a field.

Pn: The n-dimensional projective space.

Pic(X): The Picard group of the surface X.

C ·D: The intersection number of the divisors C and D.

C2: The self intersection number of C.

C ∼ D: Linear equivalence.

C ∼Q D: Linear equivalence of Q-divisors.

C ≡ D: Numerical equivalence.

ck(E): The k-th Chern class of E.

KX : The canonical divisor of X.

deg f : The degree of the finite morphism f .

N1(X): (Pic(X)/ ≡)⊗Z R, i.e. the group of R-divisors on X up

to numerical equivalence.

Hk(X,D): The k-th cohomology of OX(D) on X

hk(X,D): The dimension of Hk(X,D) as vector space

κ(X): The Kodaira dimension of X.

ρ(X): The Picard number of X.

supp (D): The support of the divisor D.
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χ(X,D): The Euler characteristic of OX(D) on X.

g(C): The geometric genus of C.

pa(C): The arithmetic genus of C.

Alb(X): The Albanese variety of X.
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detailed and helpful advice to the very first thesis of mine, and patiently
answering every question. I would like to thank Julius Groenjes and Jonas
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2 Preliminaries

In this chapter we give some results on algebraic surfaces that will be fre-
quently used in the next chapters.

2.1 Intersection theory of the blow up of a surface

The relations of the intersection theory of the blow up and the intersection
theory of the surface itself plays an important role in this thesis. We state
here the relation between the Picard groups and the intersection form on
the blow up and the ones of the original surface. We refer to Section V.3 in
[Har77] for details.

Theorem 2.1 (Picard group of blow up). Let X be a surface and p ∈ X
be a point. Let 󰁨X be the blow up of X at p and E be the exceptional di-
visor. Then the pullback f∗ : Pic(X) → Pic( 󰁨X) and the homomorphism
g : Z → Pic( 󰁨X), 1 󰀁→ E gives an isomorphism Pic( 󰁨X) ∼= Pic(X)⊕ Z.

Proof. [Har77, Proposition V.3.2]

Under this identification, we can write every divisor on 󰁨X as f∗D + nE,
where D is a divisor on X and n is an integer, up to linear equivalence. In
this explicit situation the intersection theory of general varieties reduces to
a simple form.

Theorem 2.2 (Intersection pairing of blow up). Let X be a surface and
p ∈ X be a point. Let 󰁨X be the blow up of X at p and E be the exceptional
divisor. The intersection pairing on Pic( 󰁨X) is given by

Pic( 󰁨X)× Pic( 󰁨X) → Z
(f∗D1 + n1E, f∗D2 + n2E) 󰀁→ D1 ·D2 − n1n2,

where D1 ·D2 is the intersection on X. In particular, we have

1) f∗D1 · f∗D2 = D1 ·D2,

2) f∗D1 · E = 0,

3) E2 = −1

Proof. [Har77, Proposition V.3.2]

2.2 Zariski decomposition

The Zariski decomposition gives a possible way to separate a divisor into a
nef part and a negative part.
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Theorem 2.3 (Zariski decomposition). Let D be a Q-effective divisor on
a surface X, i.e. D ∼Q

󰁓
i αiDi for some positive rational numbers αi and

effective divisors Di. Then there exist unique Q-effective divisors P and N
such that D ∼Q P +N and

1) P is nef

2) D−N is Q-effective. If N is nonzero, it has negative definite intersec-
tion matrix. More precisely, let N =

󰁓
iNi, where Ni are irreducible

curves on X. The intersection matrix is defined to be (Ni ·Nj)i,j. In
particular, N2 < 0, and N2

i < 0 for all i.

3) P is orthogonal to N , i.e. P ·Ni = 0 for all i.

Proof. [Băd01, Theorem 14.14]

2.3 Miyaoka-Yau inequality

We need this inequality for the proof of the Weak Bounded Negativity Con-
jecture.

Theorem 2.4 (Logarithmic Miyaoka-Yau inequality). Let X be a complex
surface. Let C be a smooth curve on X such that the logarithmic canonical
divisor KX +C is big or Q-effective. Then we have the following inequality:

c21(Ω
1
X(logC)) ≤ 3c2(Ω

1
X(logC)).

Equivalently, (KX + C)2 ≤ 3(c2(X)− 2 + 2g(C)).

Proof. The big case is [BBC+12, Theorem A.2.8]. The Q-effective case is
[Miy84, Corollary 1.2].

2.4 Finite morphisms to projective space

For any base point free divisor D on a smooth projective surface, we can
find a finite morphism to P2 such that the pullback of O(1) is D. More
generally, we have the following proposition.

Proposition 2.5. Let X be a smooth projective variety of dimension n. Let
D be a base point free divisor on X. Then there exists a finite surjective
morphism f : X → Pn such that f∗OPn(1) ∼= D.

Proof. The base point free divisor D defines a morphism φD : C → PN to a
projective space such that O(D) ∼= φ∗

DO(1). The projection from one point
α : Pk 󰃚󰃚󰃄 Pk−1 has the property that OPk(1) = α∗OPk−1(1). By successive
projections Pk 󰃚󰃚󰃄 Pk−1 from a general point, we obtain a finite surjective
morphism f : X → Pn with f∗OPn(1) ∼= D.
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3 General Results

In this chapter we give a proof of Proposition 1.1 and collect some numerical
conditions under which the Bounded Negativity Conjecture holds.

3.1 Proof of Proposition 1.1

Recall Proposition 1.1:

Proposition 1.1 ([Har77, Exercise V.1.10]). Let C be a smooth projective
curve over a field k of characteristic p. Consider the product C × C and
the endomorphism Γ := Id×F , where F is the p-power Frobenius morphism
C → C. Then, the self intersection of the image of the diagonal ∆ under
Γn is given by

Γn(∆) · Γn(∆) = pn(2− 2g(C)).

In particular, if the genus of C is larger than 1, the surface C ×C does not
have bounded negativity.

Proof. We first calculate

∆2 = deg(O(∆)|∆) = − deg(O(−∆)|∆) = − degKC = 2− 2g(C).

Observe that Γn
∗∆ = Γn(∆), as the composition C → ∆ → C, where the

second arrow is induced by the projection C×C → C, is IdC by the definition
of diagonal morphisms. This implies deg(C → ∆) = 1.
Now, by the projection formula,

Γn(∆) ·Γn(∆) = Γn
∗∆ ·Γn

∗∆ = ∆ · (Γn)∗Γn
∗∆ = degΓn ·∆2 = pn(2− 2g(C)).

3.2 Bounded negativity with nef or Q-effective anti-canonical
divisor

When the anti-canonical divisor is nef or Q-effective, the bounded negativity
follows from the adjunction formula.

Proposition 3.1. Let X be a surface with nef anti-canonical divisor, then
for each irreducible and reduced curve C on X we have C2 ≥ −2.

Proof. By the adjunction formula,

C2 = −KX · C + 2pa(C)− 2 ≥ −2.
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Proposition 3.2. Let X be a surface with Q-effective anti-canonical divisor.
Take the Zariski decomposition −KX ∼Q P +N = P +

󰁓
j ajNj, where Nj

are irreducible components of N . Then for all irreducible and reduced curves

C on X, we have C2 ≥
󰀓
minj N

2
j

󰀔
− 2.

Proof. The curve C is either one of the Nj , or has positive intersection with
−KX . By the adjunction formula,

C2 = −KX · C + 2pa − 2 ≥
󰀕
min
j

N2
j

󰀖
− 2.

3.3 Passing through finite morphisms or blow ups

We give a partial answer to Question 4 and Question 5 in the Introduction
about the behaviour of bounded negativity under finite morphisms or blow
ups.

Proposition 3.3. Let X,Y be surfaces and f : X → Y a finite morphism.
If there exists an integer b(X) such that for all irreducible and reduced curves
C on X we have C2 ≥ −b(X), then for all irreducible and reduced curves D
on Y we have D2 ≥ − deg f · b(X).

Proof. For a curve D on X we have f∗f
∗D = deg f ·D. The pullback f∗D

can be written as sum of curves
󰁓

i niCi, where Ci are irreducible reduced
curves on X, and ni are integers such that

󰁓
i ni ≤ deg f . By the projection

formula,

D2 =
1

deg f
f∗f

∗D ·D =
1

deg f
f∗D2

≥ 1

deg f

󰁛

i

n2
iC

2
i ≥ 1

deg f
(deg f)2(−b(X)).

Proposition 3.4. Let 󰁨X be the blow up of a surface X at a point. Assume
that there exists an integer b( 󰁨X) such that for all irreducible and reduced
curves C on 󰁨X, we have C2 ≥ −b( 󰁨X). Then for all irreducible and reduced
curves D on X, we have D2 ≥ −b( 󰁨X)

Proof. This follows directly from the fact that for the strict transform 󰁨D of
D, we have D2 ≥ 󰁨D2.
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4 Surfaces with surjective separable endomorph-
isms

The counterexample of Proposition 1.1 is based on a non-trivial surjective
endomorphism, i.e. a surjective endomorphism that is not an isomorphism.
The endomorphism in this example induces a inseparable field extension on
the function field of C × C. It turns out that it is this inseparability of the
endomorphism making the bounded negativity fail. In this chapter, we show
that if a surface (of arbitrary characteristic) admits a non-trivial surjective
separable endomorphism, then it has bounded negativity.

4.1 Bounded negativity with non-trivial surjective separable
endomorphisms

As the first step, we show that any surjective endomorphism of a surface is
finite.

Lemma 4.1 ([Fuj02, Lemma 2.3]). Let X be a surface admitting a non-
trivial surjective endomorphism f : X → X. The pullback of divisors induces
an automorphism of vector spaces f∗ : N1(X) → N1(X). Moreover, f is
finite.

Proof. We first show that the pullback f∗ : N1(X) → N1(X) is inject-
ive. Assume that there exists a divisor D on X such that f∗D ≡ 0, i.e.
0 = f∗D · C = D · f∗C for all curves C on X. As f is surjective, divisors of
the form f∗C generate the space N1(X), hence D ≡ 0.
SinceN1(X) is a finite dimensional vector space of dimension ρ(X), f∗ is iso-
morphism. If f is not finite, then there exists a curve C on X contracted to a
point via f . Take an ample divisor H on X. Then, we can find an R-divisor
D such that H = f∗D. By the projection formula C ·H = f∗C ·D = 0, a
contradiction.

We can show that any surface admitting a non-trivial surjective separable
endomorphism has only finitely many negative curves, but before that we
need a lemma in set theory.

Lemma 4.2. Let S be a set, and T ⊆ S be a finite subset. Let f : S → S
be an injective map. Moreover, assume that there exists an integer m such
that fm(t) = t for all t ∈ T . If for any s ∈ S, there exists an integer k such
that fk(s) ∈ T , then S is also finite.

Proof. Write f−l(t) :=
󰀋
s ∈ S | f l(s) = t

󰀌
for the preimage set of t under

f l. We deduce that for all t ∈ T , the set
󰁖∞

l≥0 f
−l(t) is a finite set, since f

is injective and fm|T is the identity on T .
Assume that S is infinite. By the drawer principle, there exists at least
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one element t ∈ T , such that there exists an infinite sequence of elements
si ∈ S and integers ki with fki(si) = t. But this is a contradiction to that󰁖∞

l≥0 f
−l(t) is finite.

Proposition 4.3 ([Nak10, Lemma 3.1]). Let X be a surface admitting a
non-trivial surjective separable endomorphism f : X → X. Then there are
only finitely many negative curves on X. In particular, X has bounded
negativity.

Proof. Denote the set of negative curves on X by Neg(X). We need to show
that Neg(X) is a finite set.
By the projection formula, we have f∗f

∗C = deg f · C for all curves, hence
f∗ is also an isomorphism on N1(X). We claim that f induces an injection
Neg(X) → Neg(X). Assume f(C) = f(C ′) for a negative curve C and an
integral (but not necessarily negative) curve C ′. Then f∗(C

′) = αf∗(C) for
some rational number α > 0. Hence C ′ − αC ≡ 0 by the injectivity of
f∗. Then C · C ′ = αC2 < 0, implying C = C ′. In particular, f(C) is a
negative curve, since for any integral component D in f∗(f(C)), we have
f(D) = f(C), hence D = C, and therefore

f(C)2 =
1

deg f
(f∗C)2 =

1

deg f
(mC)2 < 0

for some positive integer m.
Next, we show that if C is a negative curve, then fk(C) lies in the ramific-
ation locus Rf of f for infinitely many integers k. Assuming the contrary,
we have f∗ 󰀃fk+1(C)

󰀄
= fk(C) for all but finitely many k. Set bk to be the

integer with f∗(fk+1(C)) = bkf
k(C), so bk is 1 for all but finitely many k.

and hence

C2 =
deg f

b20
· f(C)2 =

(deg f)2

b20b
2
1

· f2(C)2 = · · · ∈
∞󰁟

k=0

(deg f)k
󰁔k

i=0 b
2
i

· Z = ∅,

which is a contradiction. Hence f∗ 󰀃fk+1(C)
󰀄
= bk · fk(C) for infinitely

many k with bk > 1, implying fk(C) ⊆ suppRf .
To conclude, let T (X) be the subset of Neg(X) containing the negative
curves with support in the ramification divisor. Note that f is an injection
on Neg(X), and suppRf contains only finitely many components, hence the
set T (X) is finite. Let C be a curve in T (X). There exist infinitely many
integers k such that fk(C) ∈ T (X). Therefore, there exist two integers
k1, k2 such that fk1(C) = fk2(C). Hence f |k1−k2|(C) = C by the injectivity
of f . We take kC to be the smallest integer such that fkC (C) = C, and
define k0 :=

󰁔
C∈T (X) kC . We see that fk0 is the identity on T (X). Then,

we can apply Lemma 4.2 to Neg(X), T (X) and f , and deduce that Neg(X)
is a finite set.
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4.2 Classification of surfaces admitting a non-trivial surject-
ive separable endomorphism

Given the result that a surface admitting a non-trivial surjective separable
endomorphism has only finitely many negative curves, it is then natural
to ask: When does a surface admit a non-trivial surjective separable endo-
morphism? We have a complete classification in characteristic 0 and we
know some essential conditions for a surface in characteristic p to have such
an endomorphism. As a byproduct, we get a better description of the set of
negative curves on the surface.
First, we show that the proof of Proposition 4.3 can be generalized, show-
ing that every negative curve on a surface admitting a non-trivial surjective
separable endomorphism lies in the ramification locus of a power of the
endomorphism.

Proposition 4.4. Let X be a surface having a non-trivial surjective sep-
arable endomorphism f : X → X. Then, any negative curve C is in the
ramification divisor Rfm for some m.

Proof. Since f induces an injection on Neg(X) and Neg(X) is a finite set,
there exists an integer j such that fm induces the identity on Neg(X).
Hence fmn is the identity on Neg(X) for all positive integers n. By the
proof of Proposition 4.3, the curve fmn(C) is in suppRfm for some n, hence
C = fmn(C) ⊆ suppRfm for some n.

4.2.1 Case of κ(X) ≥ 0

If a surface X with κ(X) ≥ 0 admits a non-trivial surjective separable
endomorphism, we can show that such an endomorphism is finite étale, and
X is a minimal surface. As a corollary, there are no negative curves on X
at all.

Proposition 4.5 ([Fuj02, Lemma 2.3]). Let X be a surface with κ(X) ≥ 0.
If X admits a non-trivial surjective endomorphism f : X → X, then f is
finite étale, X is minimal and has no negative curves.

Proof. By Lemma 4.1, f is finite. We claim that f is étale. Taking the
ramification formula KX ∼ f∗KX +R and iterating it, we get

KX ∼ (f∗)nKX + (f∗)n−1R+ · · ·+ f∗R+R.

If R ∕= 0, we take an ample divisor H and see that (f∗)kR · H > 0, and
(f∗)kKX ·H ≥ 0 as KX is Q-effective. We can derive that

KX ·H = ((f∗)nKX + (f∗)n−1R+ · · ·+ f∗R+R) ·H

tends to infinity if n tends to infinity, a contradiction. Hence R = 0 and f
is étale.

15



If there exists a negative curve on X, it has to lie in the ramification locus
of f , but R = 0. So there is no negative curve on X.

Having these properties of X and f , we can classify all surfaces with
non-negative Kodaira dimension admitting a non-trivial surjective separable
endomorphism.

Theorem 4.6 ([Nak10, Theorem 1.2]). Let X be a surface with κ(X) ≥ 0
admitting a nontrivial surjective separable endomorphism. Then X is min-
imal and χ(X,OX) = 0. Moreover,

1) If κ(X) = 0, then X is either a hyperelliptic surface, a quasi-hyperelliptic
surface or an abelian surface.

2) If κ(X) = 1, then the Iitaka fibration φ : X → C gives X the unique
structure of an elliptic surface over a curve C.

Proof. By Proposition 4.5,X is minimal. We see by the Hirzebruch-Riemann-
Roch theorem that χ(X,OX) = deg f · χ(X,OX), hence χ(X,OX) = 0.
Then, we exclude the case κ(X) = 2. Assume X is of general type. Then
since f is finite étale by Proposition 4.5, we have KX ∼ f∗KX and hence
f induces an isomorphism on H0(X,mKX). Let φ : X 󰃚󰃚󰃄 Y be the Iitaka
fibration, then there is an automorphism h of Y induced by f making the
following diagram commute:

X X

Y Y.
h

φφ

f

Since φ is birational, f has to be birational as well, hence f is an isomorphism
since it is also finite étale. This contradicts the assumption that f is not an
isomorphism.
Now by the Enriques-Kodaira classification of surfaces, if κ(X) = 0, then
X is a hyperelliptic surface or a quasi-hyperelliptic surface or an abelian
surface; if κ(X) = 1, then X is an elliptic surface or a quasi-elliptic surface.
Finally, we exclude the possibility that X is a quasi-elliptic surface with
κ(X) = 1. Taking the Iitaka fibration φ : X → C, there is an automorphism
h of C induced by f making the following diagram commute:

X X

C C.
h

φφ

f

Take a general point c ∈ C such that the fibres φ−1(c) and φ−1(h(c)) are
irreducible reduced curves of geometric genus 1, and each curve has only one
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ordinary cusp. Then, f induces a finite étale morphism φ−1(c) → φ−1(h(c)).
Pulling back this morphism along the normalization P1 → φ−1(h(c)), we get
a non-trivial finite étale covering of P1, which is impossible.

Remark 4.7. The converse direction of the preceding theorem also holds,
i.e. if a surface belongs to one of the types of surfaces mentioned above, then
it admits a non-trivial surjective separable endomorphism. See [Nak10] for
a proof.

4.2.2 Case of κ(X) = −∞

Next we turn to the case where κ(X) = −∞. Then X is either rational
or a ruled surface by the Enriques-Kodaira classification of surfaces. We
have the following characterization of surfaces with κ(X) = −∞ admitting
a non-trivial surjective endomorphism. However the proof is too long to be
given here. We refer to [Nak02] and [Nak10] for a complete proof.

Theorem 4.8 ([Nak02, Theorem 3 & Theorem 17]; [Nak10, Theorem 1.1]).
Let X be a surface with Kodaira dimension κ(X) = −∞. Assume that X
admits a non-trivial surjective separable endomorphism. Define the irregu-
larity q(X) = dimAlb(X). Then X is one of the following surfaces:

1) q(X) = 0, and X is rational with at most finitely many negative curves
and −KX is big. Moreover, if the characteristic of the ground field is
0, then X is a toric surface.

2) q(X) ≥ 1, and X is a P1-bundle over a smooth projective curve T of
genus q(X).

Remark 4.9. The converse direction of the preceeding theorem holds in
characteristic 0. See [Nak02] for a proof. It is not clear whether the converse
direction holds in characteristic p.

Using the classifications, we can give an explicit description of negat-
ive curves on surfaces with κ(X) = −∞ admitting a non-trivial surjective
separable endomorphism. In the case where κ(X) = −∞, the surface X is
either a rational surface where −KX is big, or a P1-bundle. We discuss the
lower bound of self intersection of curves in each case.

• Case 1: X is rational and −KX is big. In this case −nKX is effective
for some n ∈ N. By Proposition 3.2, a negative curve is either a
component of the negative part of the Zariski decomposition of −nKX ,
or has self intersection larger equal than −2. Moreover, if X is over a
field of characteristic 0, then X is toric. In this case, the Picard group
Pic(X) is finitely generated, and the generators of Pic(X) are precisely
the generators of the homogeneous coordinate ring of X. See [Cox95]
for a proof. If a curve on X has negative self intersection, it has to be
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a generator of Pic(X). Hence the bound is given by the minimal self
intersection of the generators of the homogeneous coordinate ring.

• Case 2: X is a P1-bundle. The surfaceX has Picard number ρ(X) = 2,
since the Picard group is generated by a section C0 which has the min-
imal self intersection among all sections, and a fibre f of the fibration
(See [Har77, Proposition V.2.3]). Hence X has C0 as the unique neg-
ative curve if C2

0 < 0, or X has no negative curves at all if C2
0 ≥ 0.

Moreover, we can write X as as the projective bundle P(E) over some
curve C, where E is a locally free sheaf of rank 2 on C. It is possible to
find a E such that X ∼= P(E), and H0(C, E) ∕= 0 but H0(C, E ⊗L) = 0
for all line bundles L on C with degL < 0 (See [Har77, Proposition
V.2.8]). If E satisfies the assumptions above, the number deg(det E)
is uniquely determined and C2

0 = deg(det E) (See [Har77, Proposition
V.2.9]).

We summarize the information of negative curves as a table below.

κ(X) Classification Negative curves

0 χ(X,OX) = 0 None

−∞
rational, −KX big

Contained in the negative part of −KX

or has self intersection ≥ −2
(if also toric) Generators of the homogeneous coordinate ring
P1-bundle At most one

5 Rational surfaces of positive characteristic with
unbounded negativity

In this chapter we answer Question 2 in the Introduction, which asks for
counterexamples in positive characteristic with Kodaira dimension less than
2. We show that in characteristic p, there exists a blow up of P2 on which
the Bounded Negativity Conjecture fails. As corollaries, we deduce that for
every surface X in characteristic p, there exists a smooth blow up of X on
which the Bounded Negativity Conjecture fails, and bounded negativity is
not stable under finite pullback and blow up. In this chapter we work over
an algebraically closed field k of characteristic p.

5.1 Rational surfaces with unbounded negativity

We follow [CdB21] and construct a rational surface with unbounded negat-
ivity.
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Theorem 5.1 ([CdB21, Main Theorem]). Let m, d be positive integers such
that dm = pe − 1 for some positive integer e. Define

Zm :=
󰀋
[x0 : x1 : x2] ∈ P2|xm0 = xm1 = xm2

󰀌
.

Let Rm be the blow up of P2 along Zm. Write Cd for the image of
C1 := V (x0 + x1 + x2) under the d-power map [x0 : x1 : x2] 󰀁→ [xd0 : xd1 : xd2].

Then the strict transform 󰁩Cd in Rm is a smooth rational curve and has self
intersection d(3−m)− 1. In particular, if m > 3, the surface Rm does not
have bounded negativity.

To prove the theorem we first need several lemmas. First note that Zm

is defined by the equations s0 = xm1 −xm2 , s1 = xm2 −xm0 , s2 = xm0 −xm1 . The
preimage of Zm in Rm is an effective Cartier divisor cut out by the pullbacks
of the si. Hence they define an embedding Rm ↩→ P2 × P2.

Lemma 5.2 ([CdB21, Lemma 1.1]). Rm is the complete intersection of
y0 + y1 + y2 = 0 and xm0 y0 + xm1 y1 + xm2 y2 = 0 in P2 × P2 with coordinates
[x0 : x1 : x2] and [y0 : y1 : y2]. In particular, the canonical divisor of Rm is
KRm = ORm(m− 3,−1).

Proof. By definition of the blow up, Rm is the vanishing locus

V

󰀳

󰁅󰁃
y0(x

m
2 − xm0 )− y1(x

m
1 − xm2 )

y1(x
m
0 − xm1 )− y2(x

m
2 − xm0 )

y2(x
m
1 − xm2 )− y0(x

m
0 − xm1 )

󰀴

󰁆󰁄 .

The equation s0+s1+s2 = 0 implies thatRm is contained in the locus defined
by the equation y0 + y1 + y2 = 0. The first equation
y0(x

m
2 −xm0 ) = y1(x

m
1 −xm2 ) can be rewritten as (y0+y1)x

m
2 = xm0 y0+xm1 y1,

which is equivalent to xm0 y0 + xm1 y1 + xm2 y2 = 0. The other two equations
follow by symmetry.
Now, by the adjunction formula, we have KRm = ORm(m − 3,−1), as
KP2×P2 = OP2×P2(−3,−3).

Lemma 5.3 ([CdB21, Lemma 1.2]). If dm = pe−1 for some positive integer

e, the map 󰁩φd : C1 → P2 × P2 given by

[x0 : x1 : x2] 󰀁→
󰀓
[xd0 : xd1 : xd2], [x0 : x1 : x2]

󰀔

factors through Rm. The map is a closed immersion and the image is a
smooth rational curve which coincides with the strict transform of Cd in
Rm.

Proof. The equation x0 + x1 + x2 = 0 implies that 󰁩φd(C1) lies in the locus
y0 + y1 + y2 = 0. The equation xm0 y0 + xm1 y1 + xm2 y2 = 0 pulls back
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along 󰁩φd to xp
e

0 + xp
e

1 + xp
e

2 = 0, hence vanishes on V (x0 + x1 + x2) since

xp
e

0 + xp
e

1 + xp
e

2 = (x0 + x1 + x2)
pe . Therefore, 󰁩φd(C1) factors through Rm.

Since the map is the identity on the second factor of P2 × P2, it is a closed
immersion. It is smooth as the derivatives of its defining regular functions

are
󰀓
[dxd−1

0 : dxd−1
1 : dxd−1

2 ], [1 : 1 : 1]
󰀔

and vanish nowhere, since d is not

divisible by p. In particular, 󰁩φd(C1) is isomorphic to C1, hence rational.

Via projection onto the first factor of P2 × P2 we see that the curve 󰁩φd(C1)

maps to Cd. Since 󰁩φd(C1) is integral, it follows that it is the strict transform
of Cd.

Proof of Theorem 5.1. By the explicit form of the closed immersions

C1 ↩→ Rm ↩→ P2 × P2, we have 󰁩φd
∗
ORm(a, b) = OC1(da+ b). So we get

KRm · 󰁩Cd = degORm(m− 3,−1)|󰁩Cd
= d(m− 3)− 1.

Then by the adjunction formula,

󰁩Cd
2
= 2g(󰁩Cd)− 2−KRm · 󰁩Cd = d(3−m)− 1.

Theorem 5.1 also shows that bounded negativity is not stable under finite
pullbacks. We note that Rm fits into a Cartesian diagram:

Rm Bl[1:1:1]P2

P2 P2.
[X0:X1:X2] 󰀁→[Xm

0 :Xm
1 :Xm

2 ]

The upper morphism Rm → Bl[1:1:1]P2 is finite, and Bl[1:1:1]P2 has bounded
negativity.

Corollary 5.4. Having bounded negativity is not a property stable under
finite pullbacks in characteristic p.

Since every surface X admits a finite morphism to P2 by Proposition
2.5, we can pull back the blow up Rm to a blow up of X which does not
have the bounded negativity.

Proposition 5.5. Let X be a surface. There exists a smooth blow up of X
at finitely many points which does not have bounded negativity.

Proof. Take a finite morphism f : X → P2 as in Proposition 2.5. There are
two possible cases:
Case 1: The points Zm do not intersect with the branch locus B of f . In

20



this case, the preimage f−1(Zm) consists only of reduced points, hence the
blow up 󰁨X := Blf−1(Zm)X is smooth and fits into the Cartesian diagram:

󰁨X = Blf−1(Zm)X Rm = BlZmP2

X P2.
f

The morphism 󰁨X → Rm is finite and Rm does not have bounded negativity,
hence by Proposition 3.3 the surface 󰁨X does not have bounded negativity.
Case 2: There are points in Zm lying on the branch locus B. We show that
in this case we can find an automorphism g of P2, mapping Zm away from
B. Blowing up the points in g(Zm) gives a rational surface isomorphic to
Rm and we can reduce to the first case. Let a1, . . . , am2 be the points in Zm

and define
Gi := {g ∈ PGL3 | g(ai) ∈ B} .

Then, Gi is a proper Zariski closed subset in the group PGL3 endowed with
Zariski topology. Hence

󰁗
i PGL3\Gi = PGL3\

󰁖
iGi is a dense open subset,

the points in which act on P2 via automorphisms sending the points Zm away
from B.

Corollary 5.6. Having bounded negativity is not a property stable under
blow ups in characteristic p.

5.2 Relations with the Frobenius morphism

We then consider the rational surfaces of type Rm in a more generalized
way. It will turn out that the curves in Proposition 1.1 can be regarded as
strict transforms of curves in Theorem 5.1. We follow here [CdB21].

Definition 5.7. Let m,n be positive integers that are not divisible by p,
and let r be a non-negative integer. We write Rm,n,r for the normal surface

Rm,n,r :=

󰀫
([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2

󰀏󰀏󰀏󰀏󰀏
yn0 + yn1 + yn2 = 0

xm0 yr0 + xm1 yr1 + xm2 yr2 = 0

󰀬
.

Moreover, we write Xn for the Fermat curve xn0 + xn1 + xn2 = 0 in P2.

Note then Rm,1,1 is just Rm, and Rm,n,0 is isomorphic to Xm ×Xn.

Lemma 5.8 ([CdB21, Section 3.1]). The surface Rm,n,r is smooth if and
only if m = 1 or r ∈ 0, 1. Otherwise it has the singular locus V (x0y0, x1y1, x2y2),
which consists of 3n singular points:

{([1 : 0 : 0], [0 : s : t]) , ([0 : 1 : 0], [s : 0 : t]) , ([0 : 0 : 1], [s : t : 0]) | sn + tn = 0}
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Proof. If r = 0, the surface Rm,n,r is a product of two smooth curves. Thus
we assume r ≥ 1. Take the Jacobian matrix of the defining equations:
󰀕

0 0 0 nyn−1
0 nyn−1

1 nyn−2
2

mxm−1
0 yr0 mxm−1

1 yr1 mxm−1
2 yr2 rxm0 yr−1

0 rxm1 yr−1
1 rxm2 yr−1

2

󰀖
.

The two rows are linearly independent unless the second row is 0. If m = 1,
the second row is 0 if and only if y0 = y1 = y2 = 0, which is not pos-
sible, hence R1,n,r is smooth. If m > 1, the second row is 0 if and only
if x0y0 = x1y1 = x2y2 = 0, which yields the description of the singular
locus.

There is also a projection p2 : Rm,n,r → Xn from the surface onto its
second factor.

Lemma 5.9 ([CdB21, Section 3.1]). p2 is smooth away from V (y0y1y2) ⊆ Xn.
Every singular fibre of p2 consists of m lines meeting at a point.

Proof. The image of the singular locus of Rm,n,r lies in V (y0y1y2). Over
Xn\V (y0y1y2) every fibre is isomorphic to Xm, hence p2 is smooth away
from V (y0y1y2).
To describe the singular fibres over V (y0y1y2), it suffices to calculate the
singular fibres over V (y0). The rest follows from the symmetry of the equa-
tions. The fibre over [0 : s : t] is cut out by the equation srxm1 + trxm2 = 0.
The equation cuts out m lines meeting at [1 : 0 : 0], since s, t ∕= 0 and p does
not divide m.

Proposition 5.10 ([CdB21, Section 3.2]). For positive integers a, b not
divisible by p, we define the finite morphism

πa,b : Ram,bn,br → Rm,n,r

([x0 : x1 : x2], [y0 : y1 : y2]) 󰀁→
󰀓
[xa0 : xa1 : xa2], [y

b
0 : y

b
1 : y

b
2]
󰀔
.

If a = 1, we have a Cartesian diagram:

Rm,bn,br Rm,n,r

Xbn Xn.

π1,b

p2 p2

Proof. Explicit computation.

Lemma 5.11 ([CdB21, Lemma 3.3]). Let m,n be positive integers not di-
visible by p, let r be a non-negative integer ,and let a be an integer such that
r + am ≥ 0. Then, the rational map

ψa : P2 × P2 󰃚󰃚󰃄 P2 × P2

([x0 : x1 : x2], [y0 : y1 : y2]) 󰀁−→ ([x0y
a
0 : x1y

a
1 : x2y

a
2 ], [y0 : y1 : y2])

maps Rm,n,r+am birationally onto Rm,n,r.
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Proof. Computation in coordinates shows that the image of Rm,n,r+am is
contained in Rm,n,r. The map is birational since it has a rational inverse
ψ−a. The base locus of ψa and ψ−a is V (y0y1y2) which does not contain the
two surfaces.

We now clarify the relation between Theorem 5.1 and Poposition 1.1.
Recall that 󰁩Cd is a curve in Rm

∼= Rm,1,1 and π1,m is a finite morphism
Rm,m,m → Rm,1,1.

Corollary 5.12 ([CdB21, Corollary 3.4 & Section 3.5]). The rational map
ψ−1 maps Xm ×Xm

∼= Rm,m,0 birationally onto Rm,m,m. Moreover, if d is
a positive integer such that dm = pe − 1 for some positive integer e, then
the strict transform of π∗

1,m
󰁩Cd under ψ−1 is the transpose Γ⊺

F e of the graph
of the pe-power Frobenius map on Xm.

Proof. The first statement follows from Lemma 5.11. Now for the second
statement, recall that the transpose Γ⊺

F e is given by a section s of p2:

s : Xm → Xm ×Xm

[y0 : y1 : y2] 󰀁→
󰀓
[yp

e

0 : yp
e

1 : yp
e

2 ], [y0 : y1 : y2]
󰀔
.

Furthermore, recall that by Lemma 5.3, the curve 󰁩Cd is given by the image
of

φd : X1 → Rm,1,1

[y0 : y1 : y2] 󰀁→
󰀓
[yd0 : yd1 : yd2 ], [y0 : y1 : y2]

󰀔
.

By Lemma 5.10 the map π1,m fits into a Cartesian diagram:

Rm,m,m Rm,1,1

Xm X1.

π1,m

p2 p2

Combining the diagram and φd, we see that π∗
1,m

󰁩Cd is the image of the
section:

Xm → Rm,m,m

[y0 : y1 : y2] 󰀁→
󰀓
[ydm0 : ydm1 : ydm2 ], [y0 : y1 : y2]

󰀔
.

In particular, π∗
1,m

󰁩Cd it is a smooth irreducible reduced curve. Now the
rational map ψ−1 ◦ s is given by

ψ−1 ◦ s : Xm 󰃚󰃚󰃄 Rm,m,m

[y0 : y1 : y2] 󰀁−→
󰀓
yp

e−1
0 : yp

e−1
1 : yp

e−1
2 ], [y0 : y1 : y2]

󰀔
.
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The image agrees with π∗
1,m

󰁩Cd on the locus where the rational map is defined,

hence Γ⊺
F e is the strict transform of π∗

1,m
󰁩Cd under ψ−1.

We can now give an alternative proof of Theorem 5.1.

Proof of Theorem 5.1. We first note that ψ−1 corresponds to a sub linear
system of the bundle O(1, 2), since it can be written as

[x0 : x1 : x2]× [y0 : y1 : y2] 󰀁→ [x0y1y2 : x1y0y2 : x2y0y1]× [y0 : y1 : y2].

The sub linear system has base points V (y0y1y2), which contains the 3m2

points
󰀫
[0 : u : v]× [0 : s : t], [u : 0 : v]× [s : 0 : t], [u : v : 0]× [s : t : 0]

󰀏󰀏󰀏󰀏󰀏
um + vm = 0

sm + tm = 0

󰀬
.

Blowing up these points, we get a surface 󰁩Rm,m,0 and a morphism
󰁪ψ−1 : 󰁩Rm,m,0 → Rm,m,m ([Har77, Example II.7.17.3]) making the follow-
ing diagram commute:

󰁩Rm,m,0

Rm,m,0 Rm,m,m.

α

ψ−1

󰁪ψ−1

Γ⊺
pe passes through 3m points in V (y0y1y2). Hence

󰀓
󰁩Cd

󰀔2
=

1

m2

󰀓
π∗
1,m

󰁩Cd

󰀔2
=

1

m2

󰀓
󰁪ψ−1

∗
π∗
1,m

󰁩Cd

󰀔2

=
1

m2

󰀃
α∗Γ⊺

F e

󰀄2
=

1

m2

󰀓󰀃
Γ⊺
F e

󰀄2 − 3m
󰀔

=
1

m2
(pe(2− 2g)− 3m) =

1

m2
((dm+ 1)(2− (m− 1)(m− 2))− 3m)

= d(3−m)− 1.

6 Surfaces with infinitely many negative curves of
fixed genus and self intersection

In this chapter we give a positive answer to Question 3 in the Introduction
about the existence of surfaces having infinitely many negative curves of a
fixed self intersection. We first show that given an integer m ≥ 1, there
exists a complex surface with infinitely many curves having self intersection
−m.
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Theorem 6.1 ([BHK+13, Theorem 4.1]). Given an integer m ≥ 1, there
exists a complex surface with infinitely many negative curves with self inter-
section −m.

Proof. Take an elliptic curve E without complex multiplication and denote
A := E×E. Then A is an abelian surface. Write F1, F2 for the fibres of the
two projections onto E, and ∆ for the diagonal. The Néron-Severi group
of A is generated by F1, F2,∆. By [BS08, Proposition 2.3], for a positive
integer n, the class n(n + 1)F1 + (n + 1)F2 − n∆ is numerically equivalent
to an elliptic curve on A. Write En for the corresponding elliptic curve.
Note that E2

n = 0. Using translations on A, we may assume that the origin
of En is the origin of A. In this case, En forms a subgroup of A. Take a
positive integer t such that t2 ≥ m and consider the t-torsion points on En.
All the t-torsion points of all En (there are t2 points for each En) lie on the
t-torsion points on A (there are t4 points). Since there are only finitely many
t-torsion points on A, we can find an infinite subsequence of (En)n such that
they pass through the same t2 many t-torsion points on A. Blowing up m
points among the t2 points, we get that the proper transform Cn of En in
the subsequence has self intersection C2

n = E2
n −m = −m.

We may push the discussion even further. Given two integers m ≥ 1, g ≥ 0,
does there exist a surface X with infinitely many genus g curves having self
intersection −m? The answer is yes form ≥ g/2+1. Moreover, if we restrict
to the complex numbers, we can also find such a surface for all g ≥ 0,m ≥ 2.
For the case g = 0,m = 1 we have the following explicit example. This pro-
position can be found in [Nag60, Theorem 4a], but the proof there is written
in classical language. We formulate here a proof in the language of modern
algebraic geometry.

Proposition 6.2. Let C1, C2 be two general smooth cubic curves on P2

having transversal intersections. Then the surface obtained by blowing up P2

at the nine intersecting points of C1, C2 is an elliptic surface with infinitely
many (−1)-curves.

Proof. Take the elliptic fibration given by the pencil generated by two gen-
eral smooth cubic curves C1, C2 on P2. More precisely, we take two general
functions in O(3) and consider the corresponding rational map P2 󰃚󰃚󰃄 P1.
By blowing up the 9 base points we get an elliptic fibration whose almost
all fibres are smooth elliptic curves. Write ei for the 9 intersection points of
C1, C2 and Ei for the 9 execptional divisors.
The anti-canonical divisor −KX is given by O(3) −

󰁓
iEi, which is also

the strict transform of a cubic curve going through the nine base points.
Hence the anti-canonical divisor is just the fibre class. In particular, −KX

has intersection number 1 with a section. Let C be a section of the elliptic
fibration. By the adjunction formula:

C2 = degKX |C −KX · E = −1.
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Pick the point e1 as the neutral element of C1 and the exceptional divisor
E1 as the neutral element of the generic fibre. Since C1, C2 are chosen very
generally, we can assume e2 is not a torsion point of C1. This implies that
E2 is not a torsion in the generic fibre, since the group structure of the
generic fibre is compatible with C1. By taking all of the multiples of E2, we
get infinitely many sections and hence infinitely many (−1)-curves.

To prove the case where g ≥ 0,m ≥ 2, we need the Hurwitz covering
which gives a finite morphism from a smooth curve of genus g to P1 of degree
m.

Proposition 6.3. For any pair of integers g,m satisfying m ≥ g/2+1, every
smooth curve of genus g has a finite morphism to P1 of degree m. Moreover,
if the ground field is the complex numbers, then for any g ≥ 0, 2 ≤ m ≤ g/2+1,
there exists a finite morphism f : C → P1

C of degree m, where C is a smooth
complex curve of genus g.

Proof. The case m ≥ g/2+ 1 follows from [KL74, Theorem 5], and the case
m ≤ g/2+1 over the complex numbers follows from [ACG11, Theorem 12.3].
We prove here only the special case m ≥ 2g for arbitrary characteristic. In
this case, we pick a divisor D on C with degree m. By [Har77, Corollary
IV.3.2] , D is base point free. By Proposition 2.5, we get a finite morphism
g : C → P1 satisfying O(D) ∼= g∗O(1). It follows that deg g = degD = m.

Theorem 6.4. Given two integers g ≥ 0,m ≥ g/2+1, there exists a surface
with infinitely many negative curves of genus g and self intersection −m.

Proof. Let f : X → P1 be the elliptic fibration given in Proposition 6.2.
Take a degree m morphism f ′ : C → P1 where C is a smooth curve of genus
g, whose existence is ensured by Proposition 6.3 and consider the following
Cartesian diagram:

X ×P1 C X

C P1.

f

f ′

By Proposition 6.2, every section of f gives a (−1)-curve. The sections are
pulled back to sections of X ×P1 C → C and have self intersection −m.

Theorem 6.5 ([BHK+13] Theorem 4.3). Given two integers m ≥ 2, g ≥ 0,
there exists a complex surface with infinitely many genus g negative curves
with self intersection −m.

Proof. The proof is the same as Theorem 6.4, but over the complex numbers,
Proposition 6.3 also ensures the existence of degree m cover C → P1 when
2 ≤ m ≤ g/2 + 1.
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Question 6.6. Do there exist (complex) surfaces containing infinitely many
negative curves of genus g ≥ 1 and self intersection −1?

7 Possible generalizations

We now present some branching results and possible adjustions of the bounded
negativity conjecture.

7.1 Weak bounded negativity conjecture

We can strengthen our hypothesis on curves by bounding their geometric
genus.

Conjecture 7.1 (Weak Bounded Negativity Conjecture). For each smooth
projective surface X and each integer g, there exists a number b(X, g) de-
pending on X, g, such that C2 ≥ −b(X, g) for all irreducible reduced curves
C of geometric genus g(C) ≤ g.

7.1.1 Case of characteristic 0

In the case of characteristic 0, [BBC+12] proved the Weak Bounded Neg-
ativity Conjecture for surfaces with non-negative Kodaira dimension (See
[BBC+12, Proposition 3.5.3]). Hao found that one can modify the proof us-
ing the generalized Miyaoka-Yau inequality and gave the proof for arbitrary
surfaces. Here, we follow Hao’s paper [Hao19].

Theorem 7.2 ([Hao19]). Let X be a complex surface. Then there exists a
number b(X, g) depending on X and a non-negative integer g, such that for
every irreducible reduced curve C on X with geometric genus g, we have the
inequality C2 ≥ −b(X, g).

We separate the proof into three cases:

1) −KX effective;

2) h0(X,−KX) = 0 and h0(X, 2KX + 2C)) = 0;

3) h0(X,−KX) = 0 and h0(X, 2KX + 2C) > 0.

In the first case the bounded negativity follows from Proposition 3.2 and
the bound is independent of g(C) and X. The following result gives a bound
for the second case which is also independent of g(C).

Proposition 7.3 ([Hao19, Lemma 1.3]). Let X be a surface such that
H0(X,−KX) = 0. Let C be an irreducible reduced curve on X such that
H0(X, 2KX + 2C) = 0. Then C2 ≥ K2

X + χ(X,OX)− 3.
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Proof. We have a short exact sequence:

0 → OX(2KX + C) → OX(2KX + 2C) → OC(2KX + 2C) → 0.

Since h0(X, 2KX + 2C) = 0, we see that h0(X, 2KX + C) = 0. Similarly,
h0(X,−KX − C) = 0. Now by the Riemann-Roch theorem and the Serre
duality,

h0(X, 2KX + C) + h0(X,−KX − C)− h1(X, 2KX + C)

= h0(X, 2KX + C)− h1(X, 2KX + C) + h2(X, 2KX + C)

= χ(X,OX) +K2
X − C2 + 3pa(C)− 3.

Hence C2 ≥ K2
X + χ(X,OX)− 3.

For the third case, we need the following Proposition which follows dir-
ectly from the logarithmic Miyaoka-Yau inequality.

Proposition 7.4 ([Hao19, Corollary 1.8]). Let X be a complex surface such
that H0(X,−KX) = 0. Let C be a smooth irreducible reduced curve on X
such that H0(X, 2KX + 2C) > 0. Then C2 ≥ K2

X − 3c2(X) + 2− 2g(C).

Proof. By the logarithmic Miyaoka-Yau inequality (See Theorem 2.4),

(KX + C)2 ≤ 3c2(X) + 6g(C)− 6.

By the adjunction formula, we have KX · C = 2g(C) − 2 − C2 and hence
(KX +C)2 = K2

X −C2+4g(C)−4. Combining it with the inequality above,
we get the result.

Theorem 7.5 ([Hao19, Theorem 1.9]). Let X be a surface such that
H0(X,−KX) = 0. Let C be an irreducible reduced curve on X such that
H0(X, 2KX + 2C) > 0. Then

C2 ≥ min
󰀋
K2

X + χ(X,OX)− 3,K2
X − 3c2(X) + 2− 2g(C)

󰀌
.

Proof. First define

M(X, g) := K2
X + χ(X,OX)− 3,

N(X, g) := K2
X − 3c2(X) + 2− 2g.

We know that the statement C2 ≥ min {M(X, g), N(X, g)} is true for C
smooth with genus g by Proposition 7.4. Let 󰁨X be the blow up of X at a
point p and let 󰁨C be the strict transform of C. If we can show that the in-

equality 󰁨C2 ≥ min
󰁱
M( 󰁨X, g), N( 󰁨X, g)

󰁲
implies C2 ≥ min {M(X, g), N(X, g)},

then we can blow up all the singularities of C step by step and reduce
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to the smooth case in which the statement holds. We have the relations
M( 󰁨X, g) = M(X, g)− 1 and N( 󰁨X, g) = N(X, g)− 4, and hence

min
󰁱
M( 󰁨X, g), N( 󰁨X, g)

󰁲
≥ min {M(X, g), N(X, g)}− 4.

Let m be the multiplicity of C at p. One has

C2 −m2 = 󰁨C2 ≥ min
󰁱
M( 󰁨X, g), N( 󰁨X, g)

󰁲
≥ min {M(X, g), N(X, g)}− 4.

Since m ≥ 2 if C is singular at p, the result follows.

Now, Theorem 7.2 follows by combining Proposition 3.2, Proposition 7.3
and Theorem 7.5.

7.1.2 Case of characteristic p

In characteristic p, the conjecture is false due to Proposition 1.1. Moreover,
Theorem 5.1 gives a counterexample for rational surfaces since every 󰁩Cd is
smooth rational. The failure is due to the failure of the logarithmic Miyaoka-
Yau inequality for Q-effective logarithmic canonical divisors, as we are going
to present now. We follow here Chapter 4 in [CdB21]. Recall the definitions

of Rm, Cd and 󰁩Cd from Theorem 5.1. In this section, we always assume the
numerical condition dm = pe − 1 for some positive integer e.

Proposition 7.6 ([CdB21, Lemma 4.2]). The Chern numbers of Ω1
Rm

󰀓
log 󰁩Cd

󰀔

are given by

c21

󰀓
Ω1
Rm

󰀓
log 󰁩Cd

󰀔󰀔
= d(m− 3)−m2 + 6

c2

󰀓
Ω1
Rm

󰀓
log 󰁩Cd

󰀔󰀔
= m2 + 1.

In particular,

lim
d→∞

c21(Ω
1
Rm

(log 󰁩Cd))

c2(Ω1
Rm

(log 󰁩Cd))
= ∞.

Proof. We note thatRm is the blow up of P2 atm2 points, henceK2
Rm

= 9−m2
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and c2(Rm) = m2 + 3. It follows that

c21

󰀓
Ω1
Rm

󰀓
log 󰁩Cd

󰀔󰀔
=

󰀓
KRm + 󰁩Cd

󰀔2

= K2
Rm

+ 2KRm · 󰁩Cd + 󰁩Cd
2

= 9−m2 + 2d(m− 3)− 2 + d(3−m)− 1

= d(m− 3)−m2 + 6.

c2

󰀓
Ω1
Rm

󰀓
log 󰁩Cd

󰀔󰀔
= c2(Rm) + 󰁩Cd ·

󰀓
KR + 󰁩Cd

󰀔

= m2 + 3− degK󰁩Cd

= m2 + 1.

Proposition 7.7 ([CdB21, Lemma 4.3]). We have

χ
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
= d(m− 3)−m2 + 5.

Moreover, if m > 3 and χ
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
> 0, then we have

h0
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
> 0.

Proof. By the Riemann-Roch theorem,

χ
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔

=
1

2
· 2

󰀓
KRm + 󰁩Cd

󰀔
·
󰀓
KRm + 2󰁩Cd

󰀔
+ χ (Rm,ORm)

=
󰀓
KRm + 󰁩Cd

󰀔2
+ degK󰁩Cd

+ 1

= d(m− 3)−m2 + 5,

which proves the first claim.

Next, we assumem > 3 and χ
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
> 0. By the Serre duality,

h2
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
= h0

󰀓
Rm,−KRm − 2󰁩Cd

󰀔
.

The latter has to be zero, otherwise it will follow that h0 (Rm,−KRm) > 0

since 󰁩Cd is effective, contradicting KRm = ORm(3 − m, 1) by Lemma 5.2.

Hence h2
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
= 0, and χ

󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
> 0 implies

h0
󰀓
Rm, 2KRm + 2󰁩Cd

󰀔
> 0.

Hence Theorem 2.4 fails on the surface Rm if m > 3, and there is no

bound for c21

󰀓
Ω1
Rm

󰀓
log 󰁩Cd

󰀔󰀔
/c2

󰀓
Ω1
Rm

󰀓
log 󰁩Cd

󰀔󰀔
if we let d vary.
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7.2 Harbourne constants

The study of Harbourne constants gives a possible approach to one direction
of Question 5 in the Introduction: Let 󰁨X → X be the blow up of X at n
disjoint points, can we derive bounded negativity of 󰁨X from the bounded neg-
ativity of X? First note that the converse direction is true by Proposition
3.4.
To define the Harbourne constant of a surface, we first show that the irredu-
cibility hypothesis in the Bounded Negativity Conjecture can be removed.

Proposition 7.8 ([BHK+13, Porposition 5.1]). For a surface X, there exists
a constant b(X) such that C2 ≥ −b(X) for all negative curves if and only if
there exists a constant b′(X) such that C2 ≥ −b′(X) for all reduced curves.

Proof. Let C be a reduced curve. We take the Zariski decomposition
C ∼Q P +N =

󰁓
i aiPi+

󰁓
j bjNj , where Pi, Nj are irreducible components

of P,N . Since the intersection matrix (Ni · Nj)i,j is negative definite, the
Nj ’s are linearly independent in N1(X). Moreover, bj ≤ 1 since C is re-
duced. By the Hodge index theorem, the number of Nj is at most ρ(X)− 1.
We then have

C2 =

󰀳

󰁃
󰁛

i

aiPi +
󰁛

j

bjNj

󰀴

󰁄
2

≥
󰁛

j

N2
j ≥ (ρ(X)− 1) · (−b(X)).

Definition 7.9. Let P = {p1, . . . , pn} be a set of distinct points on a surface
X. Let 󰁨X be the blow up of X at P. For a reduced curve C on X we write
󰁨C for the strict transform of C on 󰁨X. We define the Harbourne constant of
X at P as

H(X;P) := inf
C

󰁨C2

n
,

where the infimum is taken over all the reduced curves on X.

Equivalently, the Harbourne constant of X at P can be defined as
H(X;P) = infC

C2

n − 1
n

󰁓n
i=1m

2
i , where mi is the multiplicity of C at mi.

Definition 7.10. Let X be a surface. We define the global Harbourne
constant of X as

H(X) := inf
P

H(X;P),

where the infimum is taken over all finite sets of distinct points on X.

It follows then directly from definition that if H(X) > −∞, then X has
bounded negativity. Moreover, if X satisfies H(X) > −∞, we can deduce
that any blow up of X at distinct points also has bounded negativity.
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Proposition 7.11 ([BDRH+15, Remark 2.3]). Let X be a surface having
bounded negativity such that H(X) > −∞. Then, for any blow up 󰁨X of X
at finitely many distinct points, 󰁨X also has bounded negativity.

Proof. If 󰁨X is the blow up of X at P = {p1, . . . , pn}, there are two types
of integral curves on 󰁨X: the exceptional divisors E1, . . . , En, and the strict
transform 󰁨C of an integral curve C on X. We have the following inequalites
for 󰁨C2:

󰁨C2 ≥ nH(X;P) ≥ nH(X).

For the exceptional divisors Ei we have E2
i = −1, hence the result follows.

We do not use any reducible curves here, but generalizing the defini-
tion to all reduced curves relates the bounded negativity to configuration
of curves on surfaces. We take here the projective plane as an example. It
is an old question in curve configurations on P2 asking: How good are the
multiplicities of a curve at some points bounded, if the degree of the curve is
bounded? If the global Harbourne constant of P2 is not −∞, we can bound
the average multiplicity at n points of a curve of degree d as follows:

1

n

n󰁛

i=1

mi ≤
󰁶

1

n

󰁛

i

m2
i ≤

󰁵
d2

n
−H(P2).

In the case of positive characteristic, we know that H(P2) = −∞, since the
surface Rm in Theorem 5.1 is a blow up of P2 and does not have bounded
negativity. Now by Proposition 7.11, we obtain H(P2) = −∞. In the case of
characteristic 0, we still do not know whether H(P2) is bounded. An upper
bound ofH(P2) known now is the Wiman configuration (See [Wim96]) which
contains 45 lines and gives 1

n

󰀃
C2 −

󰁓
im

2
i

󰀄
= −225/67.

For more detailed discussions about the Harbourne constants we refer to
[DHS21] and [BDRH+15].

7.3 Weighted Bounded Negativity Conjecture

In the Weighted Bounded Negativity Conjecture we hope to bound the
“weighted self intersection” instead of the self intersection, which is weaker
than the original conjecture. The precise formulation is as follows.

Conjecture 7.12 (Weighted Bounded Negativity Conjecture). For each
smooth, projective surface X, there exists a number b(X) such that

C2

(C·L)2 ≥ −b(X) for all irreducible and reduced curves C on X, and all

big and nef line bundles L with C · L > 0.

The validity of the Weighted Bounded Negativity Conjecture implies the
strict positivity of local Seshadri constant, which is related to the study of
the nef cone of blow ups.
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Definition 7.13. Let X be a surface and x ∈ X be a point. Let f : 󰁨X → X
be the blow up of X at x. Denote the exceptional divisor with E. Let H be
an ample line bundle on X. We define the local Seshadri constant of H at
x to be

ε(X,H, x) := sup
ε∈R

{ε > 0 | f∗H − εE is nef} .

Or equivalently,

ε(X,H, x) := inf

󰀫
H · C
mC

󰀏󰀏󰀏󰀏󰀏
C irreducible reduced curve passing through x,

mc the multiplicity of C at x

󰀬
.

We define the local Seshadri constant at x as

ε(X,x) := inf
H ample

ε(X,H, x).

It is still unknown whether the local Seshadri constant is strictly pos-
itive in general. But we can show that the Weighted Bounded Negativity
Conjecture implies the strict positivity of the local Seshadri constant.

Proposition 7.14 ([BBC+12, Proposition 3.7.2]). If the Weighted Bounded
Negativity Conjecture is true, then ε(X,x) > 0 for all surfaces X and points
x ∈ X.

Proof. Let f : 󰁨X → X be the blow up of X at x. Let b( 󰁨X) be the bound
given by the Weighted Bounded Negativity Conjecture. Let C be an irredu-
cible reduced curve on X with multiplicity m at x. Let H be an ample line
bundle on X. Then f∗H is big and nef, and f∗H · 󰁨C = H ·C > 0, where 󰁨C
is the strict transform of C under f . We deduce that

C2 = 󰁨C2 +m2 ≥ −b( 󰁨X) · (H · C)2 +m2.

Let H,L1, . . . , Ln be an orthogonal basis of N1(X). By the Hodge Index
Theorem, we obtain L2

i < 0. Let C = a0H +
󰁓

i aiLi be the decomposition
of C in N1(X). We obtain

C2 ·H2 =
󰀓
a20H

2 +
󰁛

a2iL
2
i

󰀔
·H2 ≤ a20

󰀃
H2

󰀄2
= (C ·H)2.

This implies

(C ·H)2

m2
≥ C2 ·H2

m2
≥ (1− b( 󰁨X)(C ·H)2

m2
) ·H2,

which is equivalent to

1 + b( 󰁨X) ·H2

m2
· (C ·H)2 ≥ H2.

Hence we deduce that

C ·H
m

≥
󰁶

H2

1 + b( 󰁨X) ·H2
=

󰁶
1

1
H2 + b( 󰁨X)

≥ 1󰁴
1 + b( 󰁨X)

,

which finishes the proof.
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